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Abstract. Efficient coding of depth map is an essential part of 3-D video processing
system due to the fact that the quality of each synthesized virtual view highly depends
on the depth map. In this paper, we propose a compressed sensing (CS) based depth
coding scheme. At the encoder side, the depth map is first pair-wisely measured in its
Fourier domain, and quantization with a carefully-designed dead-zone is applied on all
CS measurements (after considering the distribution of measurement values). An opti-
mized trade-off between the measurement rate and quantization is employed to achieve
the best-possible rate-distortion performance. At the decoder side, considering that the
depth map usually consists of piece-wise constant areas and sharp edges, we solve a total
variation (TV) minimization with constraints being put forward to preserve disconti-
nuities at boundaries and at the same time enforce smoothness within the depth map.
Experimental results show that our scheme achieves a significant improvement in rate
distortion performance and a better synthesis quality as compared to the standard JPEG
scheme.
Keywords: 3-D video, depth map coding, compressed sensing, pair-wisely measure-
ment, quantization with dead-zone. .

1. Introduction. Recently, the joint video team (JVT) proposed the structure of multi-
view plus depth (MVD) [1] in which intermediate views can be synthesized by the neigh-
boring views with their corresponding depth maps. The large amount of multi-view data
in 3D video (3DV) applications can be efficiently compressed by the MVD format coding
while the 3-D scene rendering at the decoder side is also very convenient. This makes
MVD a very popular and promising solution for 3DV processing. The depth map rep-
resents 3-D scene information (i.e., the distance between capturing camera and object)
in 3DV systems. In the view-synthesis techniques, depth information is very important
and the quality of synthesized views highly depends on the depth map. Depth distortions
will cause geometry changes and occlusion variations of the overlapping foreground and
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background objects when pixels warped from an original view into a virtual view, both
of which will yield texture distortions and thus degrade the quality of synthesized views
[2]. Therefore, efficient depth map compression is crucial for 3DV system.
Depth map is typically considered as an 8-bit grayscale image. Therefore, a direct

approach to process depth map is to treat it as a standard image (or image sequence)
and compress it using the standard image or video compression tools such as JPEG or
H.264/AVC. However, these standards have been designed to provide maximum perceived
visual quality for texture/color images. Different from texture images, depth maps have
unique characteristics that make the existing standard image/video coding techniques not
suitable for depth map compression. First, depth map has discontinuous boundaries but
smooth areas within these boundaries. Several literatures have already demonstrated that
the discrete cosine transform (DCT) utilized in image and video coding is not efficient
for blocks containing complex shaped edges [3-4], while edges and boundaries of depth
map are very important for view synthesis. Second, the temporal consistency of depth
video is much lower than the texture/color video as the depth capturing devices have not
enough resolutions or the depth estimation algorithms are not satisfactory [5]. Temporal
inconsistency will directly result in inefficient inter prediction which consequently leads
to high bit-rates to encode the residual data. Moreover, conventional coding methods
focus on the guarantee of perceived visual quality with an optimal rate-distortion (R-D)
performance for viewers. However, the depth map is never displayed and it is solely used
to assist virtual view synthesis at the decoder. Thus some techniques to enhance the
visual quality such as smoothing filter make no sense for depth map.
Nowadays, how to preserve the fidelity of depth information with high efficiency has at-

tracted a lot of attention. Various approaches have been proposed attempting to compress
the depth map efficiently. Since the edge information significantly affects the rendering
quality of synthesized view, it has been shown in [6] that the rendering quality can be
increased by some special handling of object boundary regions of a depth map. Krishna-
murthy et. al. [7] improved JPEG2000 standard and proposed a coding method based
on the region of interest (ROI) which can avoid artifacts on the edges. In [8], regions
where accurate depth is especially crucial are firstly identified. These methods generate
a good rendering quality; however the compression ratio is not satisfactory. Therefore,
a technique that can preserve boundary information well and achieve better compression
efficiency is strongly required for 3DV systems.
Compressed sensing (CS) [9-11] is an emerging theory in signal processing which as-

serts that any sparse signal can be recovered from far fewer samples or measurements than
the traditional Nyquist theory suggests. It has been used in several applications such as
steganography[12] and image watermarking[13]. A distributed compressed video sensing
algorithm is proposed in [14-15] using the adaptive sparse basis. For depth map com-
pression, several CS-based methods have been recently proposed and it has been proved
that the sharp discontinuities in depth can be accurately reconstructed. An adaptive
CS framework for depth map compression using a family of graph-based transform was
proposed in [16-17]. Using the variable density random sampling method [18] (as de-
scribed in details in Section 2.2), a CS-based depth coding algorithm is proposed in [19],
which firstly subsamples the depth map in the frequency domain and then reconstructs
the image using a conjugate gradient minimization scheme. This method shows a better
performance than JPEG and JPEG2000. However, since the quantization has not been
considered for the measurements, the comparison seems unfair to some degree. Addition-
ally, it does not take into account the characteristics of the Fourier coefficients which need
further processing to compress the large volume of data.
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In this paper, a new CS-based coding scheme is proposed, which considers the charac-
teristics of depth map and measurement values as well as quantization with a carefully-
designed dead-zone. An optimization between the measurement rate and quantization is
discussed in our work. Compared to the work presented in [19], our contributions focus
on the following aspects: First, we propose a pair-wise random sampling method in the
Fourier domain and the sampling pattern is designed according to the characteristics of
Fourier coefficients. Second, a uniform scalar quantizer with dead-zone, which considers
the distribution of the Fourier coefficients, is applied on the measurements. Third, an
optimization between the measurement rate and quan- tization is considered so as to
achieve the best-possible R-D performance for the reconstructed depth map.

2. Overview of compressed sensing theory. Given a real value discrete signal x ∈ RN

with length N, it is defined to be sparse if there exists a basis matrix Ψ ∈ RN×N such
that x =Ψα where ∥α∥0 = K ≪ N . The CS theory tells us that such a K-sparse signal
can be reconstructed by the far fewer samples with certain accuracy:

y =Φx =ΦΨα=Θα (1)

where y ∈ RM denotes the measurement vector with length M , Φ is an M× N mea-
surement matrix which is incoherent with Ψ and M = O(Klog(N/K)), K < M ≪ N. The
reconstruction problem can be formulated as an optimization problem by solving:

min
1

2
∥ΦΨα− y∥22 + τ∥α∥1 (2)

where the l1 norm term enhances the sparsity of the solution in Ψ domain and the l2 norm
term ensures the fidelity between the solution and the measurements.

2.1. Variable density sampling scheme. A variable-density sampling scheme is pro-
posed in [18] and the measurement matrix is generated based on the fact that the smaller
the incoherence between Φ and Ψ, the smaller the interference produced by the sub-
sampling would be [20]. To generate the measurement matrix, a probability density
function (PDF) is firstly generated according to the distribution of the discrete Fourier
transform (DFT) coefficients with the constraint that the sum of the PDF equals to the
predefined number of the measurements. Then the binary sampling mask, where 1 at
(m, n) indicates a sampling point and 0 means no measurement on that point, is selected
as the measurement matrix according to the PDF, meanwhile making the incoherence
between Φ and Ψ as small as possible. As demonstrated in [18-19], this measurement
method is highly ef-ficient.

3. The proposed framework. The framework of our scheme is shown in Figure. 1.
The depth image x is first sub-sampled by a variable-density sampling matrix Φ which
is pair-wisely generated and the measurement vector y is obtained through Eq. (1).
Quantization with a variable dead-zone is performed on the measurement values. Then,
the quantized bit-stream yq coupled with the sampling mask Φ is arithmetic encoded and
transmitted to the decoder. At the decoder, the received bit-stream is firstly arithmetic
decoded to get the quantized measurement ŷq and the sampling mask Φ, then ŷq is de-
quantized. Finally, the output image is reconstructed by the l1−norm conjugate gradient
minimization scheme as that in [14].
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Figure 1. Block diagram of our proposed scheme

3.1. Pair-wise random measurement. The measuring method in [18] generates a sam-
pling mask randomly without con-sidering the conjugate symmetry of the DFT coeffi-
cients. Actually, since the coeffi-cients of DFT are complex numbers with each coefficient
composed of real and im-aginary parts, the quantization should be implemented to both of
these two parts, which will nevertheless lead to a high bit-rate. Here, a pair-wise random
measurement method which considers the conjugate symmetry of Fourier coefficients is
put for-ward in our work.
Figure. 2 (a) shows the distribution of the Fourier coefficients. We can see that most

energy of the image is concentrated in the k-space origin, which can be used as a prior
information and thus a variable-density sampling scheme is preferable. Figure. 2 (b) shows
the PDF under a specific measurement rate, from which we can see that the probability
around the origin is larger, which is consistent with Figure. 2 (a). Then the pair-wise
sampling mask is generated according to this PDF, which mainly consists of three steps:

(1) Determining the measurement matrix pair-wisely: First, half of the sampling
mask is generated randomly based on the PDF, and then the other half is generated
according to the symmetry. This ensures that two points symmetrical about the center
be both sampled, generating a so-called pair-wise sampling. Note that this pair-wise
sampling exploits the a prior information of DFT coefficients so that only a half of DFT
coefficients and the sampling mask need to be transmitted, which will cut down the burden
of quantization and entropy coding while without loss of recovery quality.

(2)Computing the incoherence between Φ and Ψ: When designing the pair-wise
sampling matrix, i.e., the measurement matrix Φ, we should make sure that the inco-
herence between Φ and Ψ be minimal. Similar to [18], the point spread function (PSF)
is used in our work to measure the incoherence:

PSF(i; j) = e∗jF
∗
uFuei (3)

(3)Selecting a sampling mask with minimal incoherence with Ψ: Because the
generation of the sampling mask as mentioned above is random, we may accidentally
choose a sampling pattern with a “bad” PSF. To prevent such situation, we repeat the
procedure several times; record the corresponding PSF of the current sampling pattern
each time; and finally the pattern with the lowest peak interference is selected as the
sampling mask.
Figure. 2 (c) shows the output sampling mask matrix corresponding to the PDF in

Fig. 2 (b). It is obvious that the sampling matrix follows the property the PDF while
preserves symmetry to the origin.
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Figure 2. Illustration of the distribution of (a) DFT coefficients, (b) the
PDF and (c) the sampling mask.

3.2. Quantization with dead-zone. Some forms of quantization are necessary to pro-
duce a compressed bit-stream of the CS measurements. Uniform scalar quantization
(USQ) is commonly used in the current coding schemes; however it is not suitable for
our method since the measurements (obtained from the DFT coefficients) are not uni-
formly distributed. Figure. 3 shows the statistical distribution of the measurements of
Aloe at a specific measurement rate (MR = 0.1, and note that when the MR varies, the
general trend of the measurements distribution is stable). It is obvious that most of the
measurements are around zero and only a few are significant which nevertheless make a
great contribution to the reconstruction. Hence, it comes very naturally that adopting
a quantization which deals with DFT coefficients according to their distribution. In this
paper, a uniform scalar dead-zone quantization (USDZQ) is used, as shown in Figure. 4,
where 2Df is the size of dead-zone. The quantization with dead-zone can be described as:

yq= Q(Round(k ∗ y)) (4)

where Q(·) denotes the uniform quantization, k(k > 1) is a scale factor and 2Df =
1
k
.

Figure 3. Statistical distribution of the measurements (in the case of
MR=0.1 for Aloe).

3.3. Optimization between measurement rate and quantization dead-zone. Quan-
titation affects the R-D performance. Generally, when the dead-zone 2Df decreases, the
number of zeros created by the quantization will decrease accordingly. This will lead
to an increased bit-rate R but lower distortion D. That is, the distortion D caused by
quantization will be smaller when the dead-zone decreases but at the sacrifice of a higher
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Figure 4. The scalar uniform quantizer with a dead-zone.

bit-rate R and vice versa. Meanwhile, MR is also a decisive parameter. In general, a
larger MR often leads to a better reconstructed image with an increased bit-rate cost.
As illustrated in Section 3.2, most measurements of the depth map approach to zero,

hence having little contribution toward the reconstruction. On the other hand, significant
coefficients that influence reconstruction greatly make up only a small portion of the
measurements (some 3% or less). Thus, the R-D optimization between the dead-zone and
MR should be considered carefully. The basic principle of this optimization is to minimize
D for a given R or vice versa, which can be expressed as:

min{D+λR} (5)

where D and R denote the distortion of the depth map and the bit-rate required to
transmit the depth map, respectively, and λ is the Lagrangian multiplier.
Usually, this R-D optimization problem can be solved by the Lagrangian multiplier

method [21]. In this paper, we use a simple brute-force method to solve this problem. For
a given target bit-rate, the method loops through different k with a step size 1. Then, for
a determined k, MR is adjusted with a step size 0.05 until the bit-rate meets the target.
The distortion of the depth map at each iteration is calculated, and finally the optimal
tradeoff between Df(or k) and MR can be found.

3.4. Recovery with minimal total variation. Considering the smooth area in depth
map, the optimization constraint of total variation (TV) is added to the reconstruction
[19], and then Eq. (2) becomes:

min
1

2
∥ΦΨα− y∥22 + τ∥α∥1 + γTV (x) (6)

where γ regularizes the weight of TV in the minimization.
The TV constraint aims at computing the finite differences of the depth map to measure

the overall summation of variation in the image, which guarantees the smoothness of the
depth map and preserves the edges well.

4. Simulation results. To validate the performance of our proposed scheme, three
groups of comparison experiments are presented here: (1) the performance comparison of
our scheme (when quantization is not performed) with [19], (2) the R-D performance com-
parison of depth map, and (3) the subjective and objective comparison of the synthesized
virtual views. In (2) and (3), quantization is performed and we compare our method with
JPEG and JPEG2000 standard under the same conditions. Four ground truth disparity
images (Cones, Tsukuba, Art and Aloe) provided by Middlebury test bench [22] are tested
in the experiments and the Peak Signal-to-Noise Ratio (PSNR) is used to evaluate the
distortion.
As shown in Figure. 5, we first compare the performance of our proposed scheme

with [15] under the same compression ratio (quantization is not performed here just as
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[15] does). We can obviously see that our scheme has a great advantage over [15]. The
contributing factors are: (1) pixel values are scaled within the interval [0,1], which is much
useful, (2) a different reconstruction algorithm (borrowed from [14]) is used in our paper,
and (3) we have chosen a suitable TV term to guarantee the re-construction quality.

Figure 5. Comparison with Ref. [15].

When quantization is added to the scheme, the R-D performance comparison of depth
map is presented in Figure. 6. It is obvious that the depth map compressed by our
algorithm is better than JPEG under the same BPP and achieves a superiority of 1.1 dB,
1.56 dB, 2.3 dB, and 2.3 dB in PSNR on average over JPEG. Unfortunately, there still
exists a gap with JPEG2000.

Figure 6. The rate-distortion comparison of the depth images.

Figure. 7 compares the R-D performance of the synthesized view among three schemes,
where the synthesized right view of the Middlebury images is generated using the original
left view and various compressed depth maps. Fig. 7 shows that our algorithm is more
efficient than JPEG, yet a gap exists with JPEG2000.

Next, comparisons with JPEG2000 are conducted from the objective aspect for images.
The synthesized views are presented in Figure. 8, where bit-rates used to compress depth

Figure 7. The rate-distortion comparison of the synthesized view.
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maps are 1.0 BPP for Cones, Art and Aloe, and 0.5 BPP for Tsukuba, respectively. We
can see that the synthesized right images with CS have superior (or at least the same)
visual quality than those with JPEG and JPEG2000.

Figure 8. Resulting right frame synthesized using the original left frame
of the Middlebury stereo images and various depth maps. From up till
down:Cones, Art, Aloe and Tsukuba.(a) Ground truth, (b) compressed with
CS, (c) compressed with JPEG, (d) compressed with JPEG 2000.

Although our method is not efficient than JPEG2000 in terms of ratedistortion perfor-
mance, the perceived quality of the synthesized view performs better than it especially
on edge areas as highlighted in Figure. 9, which demonstrates that the proposed scheme
achieves less visual artifacts and preserves the edges better. This also more or less demon-
strates that PSNR is not the exact quality evaluation for the reconstructed depth images.
Another reason for the efficiency loss may be that the R-D optimization does not consider
the synthesized views.

Figure 9. Highlighted parts of Fig. 8. From up till down: Cones, Art,
Aloe and Tsukuba. (a0): original parts got from (a); (b0): original parts
got from (b); (c0): original parts got from (c); (d0): original parts got from
(d).
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5. Conclusion. In this paper, a depth map coding based on compressed sensing (CS)
is proposed. Different from the previous methods, quantization with different dead-zones
is taken into account and the optimization between the measurement rate and quanti-
zation dead-zone is also considered. A new pair-wisely CS measurement is adopted in
the Fourier domain and a minimal TV constraint is imposed in the recon- struction to
preserve the edges while enhance the smoothness of the depth map. Experimental re-
sults show that our proposed scheme can preserve the arbitrary shaped edges well, and
the synthesized view achieves better visual quality compared to the standard JPEG and
JPEG2000. However, there are still some issues to be considered in the future, e.g., the
rate-distortion optimization for the synthesized view should be taken into account. The
relation between depth distortion and view synthesis distortion needs more investigation,
and a more suitable metric should be used to measure the distortion of the depth map
and synthesized view.
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