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Abstract. Crepitus is a prominent sign during the knee joint undergoing a range of
motion which can be detected to form the vibroarthrographic (VAG) signals. These signals
can be used as useful indicators of osteoarthritis (OA) status for supplementing conven-
tional X-ray imaging in the diagnosis of knee OA. In this study, a non-invasive knee
OA diagnosis system was conducted via VAG signal analysis.This system included a go-
niometer to provide an analog reference signal for positioning, an electronic stethoscope
to detect knee VAG signals and an FPGA signal processing system as a system kernel.
Power spectra of the signals provided by the Fourier transform were obtained and par-
tition indices calculated. Discriminant functions were built with distribution parameters
constructed from the partition indices. The processed VAG signals were compared with
X-ray images in OA diagnosis to explore the differences between predicted and observed
results. System model performance was evaluated using measures for discriminative abil-
ity, including the area under the receiver operating characteristic curve (AUC). The
negative predictive value (NPV) was checked for the rate of correctly predicting the ab-
sence of OA. The positive predictive value (PPV) is the proportion of patients with OA
who are correctly diagnosed.System performance was validated using the receiver operat-
ing characteristic curve. The classification result illustrated a sensitivity of 89.52% and
a specificity of 67.50%, with a total accuracy rate of 81.52%. The AUC values obtained
were 0.68 (95% CI 0.61-0.74). The rates of correctly predicting the lack of OA were
approximately 78.6% (NPV) and the proportions of patients with OA who are correctly
diagnosed were approximately 82.8% (PPV), respectively.VAG analysis in OA diagnosis
provides an economic alternative to X-ray examination in osteoarthritic patients.
Keywords: Osteoarthritis (OA); Crepitus; Vibroarthrographic signals; Kellgren-Lawrence
grading; Fourier transform
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1. Background. Osteoarthritis (OA) is a major common joint disease worldwide. It is a
progressively degenerative process and involves low-grade inflammation, mainly affecting
the elderly. It is a highly prevalent disease and causes substantial disability in late life in
most developed countries. About 10% of the total world population and more than half
of the people aged over 50 years suffer from OA [1,2]. It causes pain, swelling and reduced
motion in joints. Healthy cartilage, which is the slippery tissue that covers the ends of
the bones in a joint, absorbs the shock during movements. In OA, this cartilage breaks,
leading to the bones rubbing together. Knee OA disturbs about 30% of those over 65
years old. Its pathological features include joint space narrowing, osteophyte formation
and joint angulation [3, 4]. It gradually worsens with time and there are currently no
cures. However, OA therapies do exist that can relieve pain and help patients remain
active.
The knee is the most common part of the body to be affected by arthritic degeneration.

Injured knees resulting from a variety of traumatic causes are well-known. The very
common non-traumatic causes of knee OA include chondromalacia patella, in which the
articular cartilage softens, fibrillates and is shed from the undersurface of the patella [5, 6].
One of the major problems during the examination of the causes or progression of these
conditions is the difficulty in detecting articular cartilage changes until they become gross,
either anatomically or symptomatically. Image-based techniques such as X-ray imaging,
computed tomography (CT) and magnetic resonance imaging (MRI) can detect major
cartilage pathologies, but fail to characterize the functional integrity of the cartilage,
such as its softening, stiffness or fissuring [7].
To diagnose cartilage pathology, arthroscopy is the gold standard method for evaluating

cartilage status. The grading system provided by arthroscopy plays an important role in
the prognosis and treatment of knee osteoarthritis. However, arthroscopy is an invasive
procedure and carries some risks related to anesthesia. Furthermore, arthroscopy is not
practical in being repeated in the same patient [8, 9]. Therefore, several researchers
have continued to look for alternative tools, such as joint auscultation, to overcome these
drawbacks of imaging and arthroscopy.
Crepitus in the knee is often noted during clinical examination of OA patients. This

physical examination is performed with one hand of the examiner being placed on the
patella during a passive range of motion (ROM). However, it is a subjective assessment
and cannot be recorded and analyzed for comparison. Moreover, its interpretation is de-
pendent on the examiner and requires a lot of personal experience. This knee sound signal,
generated during knee ROM, represents the acoustic and vibrational signals caused by
the joint surfaces rubbing together. It is associated with cartilage pathological conditions
such as roughness, softening, breakdown or cartilage loss, and may be a useful index of
the osteoarthritic status [10].
Many studies have reported the feasibility and usefulness of this technique for the non-

invasive diagnosis of articular dysfunctions via the analysis of knee sounds obtained by an
auscultation. Chu et al. devised strategies to reduce the skin friction and ambient noise
during recording and to classify the knee sound signals into various categories, such as
rheumatoid arthritis, degenerative arthritis and chondromalacia patella, using their auto-
correlation function [11, 12]. Kernohan et al. reported that 86% of patients with meniscal
injuries produced characteristic signals and that the changes in the normal joint crepitus
could be a useful indicator of early cartilage degeneration [13]. They found that the signal
was the largest on the affected side, had a large displacement and appeared repetitively
at the same knee angle in cycles. McCoy et al. showed the possibility of identifying
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chondromalacia patella, meniscus lesions and arthritis using knee sound analysis, based
on the division of the sound peaks into frequency groups [14]. Rangayan et al. reported
that meniscal lesions demonstrated sharp bursts in the sound signal, which appeared as
short energy durations in the range of 0 to 200 Hz in the spectral contour plots, while
mild chondromalacia exhibited sound signals as long durations in the frequency range of 0
to 300 Hz [15]. The signals associated with severe chondromalacia were observed to be of
relatively low frequencies (0-100 Hz), as expected, due to the loose cartilage tissue existing
between the rubbing surfaces. Another report by Nagata et al. discussed the procedures
for reducing noise in the recordings of knee joint sounds and the potential of frequency
analysis of the sound signals using a narrow band spectrum analyzer in diagnosing os-
teoarthritis [16]. Reddy et al. demonstrated that the mean power of the acceleration
signal in the range of 100 to 500 Hz was significantly different for OA patients compared
to rheumatoid arthritis patients [17].

Regarding the signal processing of knee sounds, various techniques have been tested
for classifying normal and abnormal knees according to the articular pathology, such as
autoregressive [18, 19], least square [20], linear prediction modeling [21], time-frequency
analysis [22] and wavelet decomposition [23,24]. In this study, we analyzed knee sound
signals using the Fourier domain method. Fourier spectral analysis is widely used in
acoustic signal analysis; however, the spectral power partition has not been characterized
as features for knee sound analysis yet. Moreover, we explored the set-up of the signal
acquiring system in this study. Previous papers on sound characteristics did not compare
their results to those from X-ray imaging in the diagnosis of joint pathology.

The objective of this paper was to characterize the Fourier spectral features obtained
from normal and abnormal knee sounds. Correlations with X-ray images were made and
discriminant functions were then built from the feature model space to see whether knee
sound analysis could be used in diagnosing knee OA.

2. Materials and Methods.

2.1. Demographic data. Fifty-nine cases of patients with degenerative arthritis and 85
cases with no history of knee injury or discomfort were enrolled. Their demographic data
including sex, age and disease status were recorded. Every OA patient had undergone knee
X-rays for anterior-posterior and lateral views for disease grading with Kellegren-Lawrence
(KL) scores [25]. The KL grades were given by two independent orthopedic surgeons and
recorded at three compartments of the knee joint: medial, lateral and patellofemoral (PF).
The KL grading scale is for classifying the status of OA into one of five grades, with 0
representing normal and 4 the most severe disease:

Grade 0: none (definite absence of OA)
Grade 1: doubtful (doubtful narrowing of joint space and possible osteophyte)
Grade 2: minimal (definite osteophytes and possible narrowing of joint space)
Grade 3: moderate (moderate osteophytes, definite narrowing of joints space, some

sclerosis and possible deformity of bone contour)
Grade 4: severe (Large osteophytes, marked narrowing of joint space, severe sclerosis

and definite defor- mity of bone contour).
This study was approved by the Medical Ethics Committee of the Kaohsiung Munic-

ipal Min-Sheng Hospital (KMMH-IRB10101) and all participants gave informed written
consent.

2.2. Experimental protocol. An electro-stethoscope was made by assembling a con-
ventional stethoscope with a high-efficiency microphone. The microphone was connected
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to the line-in port of a PC. The sound signals were transferred to a PC through an inte-
grated audio card. The recorded signals were then digitized with a sampling rate of 44100
Hz and 16 bits per sample. A flexible electro-goniometer used to measure the knee joint
angle was placed on the lateral aspect of the knee, with the axis of rotation at the joint
line. Since the knee sound signals might be changed by the pressure between the skin and
the bell of the stethoscope, a specially fitted knee brace was used to hold the stethoscope
in front of the patella as in Fig. 1a. An overview of the VAG signals recording system
flowchart was given in Fig. 1b.
The contact area selected for auscultation was the medial condyle on the patella, to

take into consideration the physiological structure and position that could best remove
interference from muscle contraction. The knee position in flexion was defined as 90
degrees, while the knee in full extension was defined as 0 degrees. One ROM cycle
consisted of one passive extension and one passive flexion over an approximate angle
range of 90◦ → 0◦ → 90◦ in 2 seconds.
Prior to the experiment, the subject was warmed up passively to keep the speed of

knee flexion and extension constant. After a training session of several ROM cycles in
the sitting position, each subject underwent a passive ROM cycle for 20 s, keeping a
constant angular velocity as much as possible. During data collection, the passive ROM
cycle was kept to nearly 2 s per cycle. If the period is not exactly of the desired length,
the variation in the knee angular velocity might affect the frequency characteristics of
the sound signals, resulting in errors of the acquired signals. Therefore, to minimize
this possibility, the sound signals obtained during one cycle were segmented according
to the knee joint angle recorded by the goniometer. The sound signals were aligned
simultaneously with the goniometric data. The sound signals collected during 25 to 75
degrees of flexion were taken for further analysis. The signals obtained during 0 to 25
degrees and 75 to 90 degrees, corresponding to the start and end stages of the knee ROM,
were discarded due to noise. From a physioanatomical point of view, during the start
and end stage of the knee range of motion, the patella is not in full contact with the
femur surface. Moreover, a lot of ambient noise related to acceleration/deceleration of
the knee joint is more prominent during this period. Therefore, only segments from 25
to 75 degrees of flexion were retained. The ascending signal limb was labeled “up” and
the descending limb “down”. The ascending limb corresponded to knee extension, while
the descending limb corresponded to knee flexion. A difference was observed in these two
limbs despite the same tracking path of the patella on the femur surface.

2.3. Signal processing and feature selection. The sound signal was input as a stan-
dard vector form in the time domain for computer analysis. Fast Fourier transformation
of the signal was then performed. We designed a ratio index (R) to characterize the power
spectrum property of the signals:

R =
∫u1l1 f(x)2dx

∫ul f(x)2dx
(1)

In equation 1, the denominator is the partial sum of the signal power spectra in the
frequency domain. In this study, the lower limit l for integration was set at 5 and the
upper limit u at 500 [26]. The lower limit l cannot be 1 for two reasons: baseline wandering
and the fact that the first four low frequency components may interfere with the cycle
of knee range of motion. Therefore, it is necessary to start the partial sum of the power
spectra from l=5. On the other hand, the choice of the upper limit u is more flexible
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Figure 1. (a) Knee flexed (90◦) and fully extended (0◦) in a sitting posi-
tion as measured with a goniometer. (b) An overview of the VAG signals
recording system flowchart.

due to the fact that Fourier spectrum energy is more concentrated over the low frequency
region.

In Eq.1, the denominator is designed to represent the signal variability between normal
and OA knee. In this study, the lower limit l1 of this integration was set at 20 and the
upper limit u1 at 100.

In addition to the power spectral partial sum ratio R, four statistical parameters were
also obtained to complete the feature space characterization. The mean parameter was
calculated as:

m =
∑

x
(x−m)xP (x) (2)

Variance of signal was calculated as follows:

m =
∑

x
(x−m)2P (x) (3)

Skewness was calculated as:

S =
1
n

∑n
i=1 (xi − x)3

(
√

1
n

∑n
i=1 (xi − x)2)

3 (4)

Kurtosis as:

K =
1
n

∑n
i=1 (xi − x)4

(
√

1
n

∑n
i=1 (xi − x)2)

4 (5)

The patient data were randomly divided into two groups: the training data group (with
40 patients) and the test data group (with the remaining 104 patients). The training data
group had 20 patients with OA and 20 patients without OA. The test data group had 39
patients with OA and 65 without OA.
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A VAG discriminant function was used as the predictive feature which can be written
as

VAG = A |m−mtest|+B |v − vtest|+C |S − Stest|+D |K −Ktest| (6)

In equation (6), A, B, C and D represent the weightings for each absolute-valued term,
respectively. Standard deviation was assigned as 10 and substituted into equation (7),
which is known as the Moore- Penrose pseudoinverse of matrix. Therefore, the weightings
were obtained as follows:
A=-0.8203, B=1.1960, C=-159.6932 and D=156.5432.

10
10
10
10

 =


A
B
C
D

 ∗


m1

v1
S1

K1

· · ·
. . .
· · ·

mn

vn
Sn

Kn

 (7)

Four parameters calculated from equations (2) to (5) and the normalized parameters,
e.g.,xtest=x+Ntest ,were substituted into equation (6) to evaluate VAG values of normal
and OA conditions. If VAGnormal was greater than VAGOA, it was categorized into the
OA group.

2.4. Statistical analysis. To validate the use of VAG signals in identifying OA, the neg-
ative predictive value (NPV) was checked for the rate of correctly predicting the absence
of OA. The positive predictive value (PPV) is the proportion of patients with OA who are
correctly diagnosed. The equations used to determine the PPV and NPV are listed in (8)
and (9). System model performance was also evaluated using measures for discriminative
ability, including the area under the receiver operating characteristic curve (AUC). An
AUC of 1 corresponds with a perfect prediction and an AUC of 0.5 with no discrimi-
natory power at all. Cutpoint was obtained by using Youden’s index method(Youden’s
index =sensitivity+specicity-1). All analyses were performed using SPSS 17.0.

PPV =
senitivity × prevalence

senitivity × prevalence + (1− senitivity)× (1− prevalence)
(8)

NPV =
specificity × (1− prevalence)

specificity(1− prevalence) + (1− senitivity)× prevalence
(9)

3. Results. The demographic data of the 144 samples with/without OA are listed in
Table 1, the training set (with 40 patients) and the testing set (with the remaining 104
patients). The training set had 20 patients with OA and 20 patients without OA. Fig. 1
shows our recording system. In this study, the patellofemoral KL grade was taken as the
only grade for building the discriminant model. The KL grades of three compartments
were recorded and their correlation relationship explored in Table 2. Using the non-
parametric Spearman’s rho test, all three KL variables achieve statistical signi
cance at alpha level of 0.01.
As shown in Fig. 2, the sound signals are aligned simultaneously with the goniometer

data. The sound signals collected during 25-75 degrees of exion are taken for further
analysis. Fig. 3(a) shows VAG signals from one normal knee and (b) shows sound signals
of abnormal knee.
The classier as equation (6) is built using twenty OA and twenty control samples; the

remaining 104 data samples are used for validation. The scatter-plot of the study samples
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was shown in Fig.4. The red Os along the top of the graph show the individual patient
with osteoarthritis. The green Xs along the bottom show the patients without knee
osteoarthritis. The discriminant function built from equation (6) has better separating
ability than pure R value.

Table 1. Demographic data

Table 2. Correlation between the KL grades

Figure 2. Knee sound signals segmented“up” and “down” during 25◦ to
75◦ of flexion.
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Figure 3. (a) VAG signals from one normal knee and (b) sound signals
from abnormal knee. The recording system used was set in the same con-
dition for recording these two signals. Abbreviation: VAG: vibroarthro-
graphic;

Figure 4. The scatter-plot of the study samples. The red Os along the
top of the graph show the individual patient with osteoarthritis. The green
Xs along the bottom show the patients without knee osteoarthritis.

Table 3. Test Result

The classification results are shown in Table 3. The sensitivity rate was 89.52% and
specificity rate 67.50%. The total accuracy rate was 81.52%. According to Table 3, the
AUC values obtained were 0.864 (95% CI 0.791-0.937) with a standard error (SE) of
0.037, as illustrated in Fig. 5. The rates of correctly predicting the lack of OA were
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approximately 78.6% (NPV) and the proportions of patients with OA who are correctly
diagnosed were approximately 82.8% (PPV), respectively.

Figure 5. The receiver operating characteristic curve analysis for predic-
tion of with/without knee osteoarthritis. Cutpoint was obtained by using
Youdens index method.

4. Discussion. Nowadays, X-ray remains the gold standard for diagnosing OA. Although
auscultation of the knee is non-invasive, it is still not widely prevalent in clinical practice.
The crepitus sounds generated during knee ROM are non-stationary and involve multiple
components. Due to the potential harmful irradiation effects of X-ray and its cost, the
non-invasive knee sound auscultation therefore provides a useful alternative to routine
X-ray examination. In this study, the grading of osteoarthritis by X-ray was compared
to the signal properties of VAG.

For every patients X-ray, three KL grades were assigned. The KL grades were recorded
as medial, lateral and patellofemoral compartment respectively. There exists statisti-
cal significant correlation between these grades as shown in table 3. Therefore, in this
study, the patellofemoral KL grade was taken as the only grade for building the dis-
criminant model. From the pathophysiological point of view, the patellofemoral joint
plays a more important role than the other two compartments. For aging patients, the
patellofemoral OA change always compares to medial compartment change, while the lat-
eral compartment is least involved. The phenomenon may be linked to two observations:
the patellofemoral joint is the major friction surface during knee flexion-extension exer-
cise, and the human center of gravity lies in middle of body so the medial compartment
has higher stress than lateral compartment. However, if an intricate model can combined
the three KL grades, it will be of great use to explore the relationships between the three
KL grades and obtained a better discriminant model.

We used a conventional microphone with the line-in cable connected to a personal com-
puter. The microphone was then connected to a stethoscope plastic tube. This innovative
device can work well in acquiring sound signals with good quality and ease. In the setting
up of the equipment for data acquisition, the goniometer is of vital important and accom-
panies the stethoscope. As shown in Fig.2, goniometric data can provide information on
the knee position and facilitate data segmentation. We used the VAG signals during 25
to 75 degrees of flexion, while signals during the start and end stages of knee ROM were
discarded.



506 W. C. Lin, T. F. Lee, S. Y. Lin, and et al.

Regarding the variability of each cycle length, Fourier analysis was adopted. Since the
precise control of each cycle time length is not feasible, the analysis method should be
robust to the variability in signal lengths. We believe that the fundamental frequency
behavior is more constant in this respect. Indeed, high frequency components were more
prominent than low frequency ones (Fig.3). However, to compare the normal and OA
groups, differences in the frequency spectral power must be represented as a single index.
Hence, we designed the partition ration R as described by Eq.1.
In equation 1, the denominator was chosen for normalization of the sound intensity. The

lower limit of the denominator integration must not contain less than five low frequency
components. As mentioned previously, the first low frequency component is DC and
represents the offset effect, while the other low frequency components may interfere with
the knee range of motion. The choice of the upper limit is more flexible because the higher
frequency power is more diminished in the Fourier domain.
The choice of the numerator integration limits should emphasize the high frequency

differences between normal and osteoarthritic knees. In this study, the lower and upper
limits chosen corresponded to the 10 to 50 Hz region, comparable to previous studies.
Figure 4 shows the scatter-plot of the study samples with wider distribution of OA

knees signals. This wider variability explained the multi-factorial nature of knee crepitus
sounds. On the other hand, it also represents the heterogeneity of the patient group.
The normal knee group represented a more homogenous collection of healthy subjects.
There was a substantial overlap between the two groups representing normal and OA
knees respectively. We believe this overlap contributes to misclassification. However, it
was still possible to obtain good classification using VAG signals.

5. Conclusions. In this study, knee sound signals were obtained by an innovative stetho-
scope device used together with a goniometer. The sound signals were input into a per-
sonal computer and segmented according to the goniometric data. Fourier transformation
of the signals was performed to obtain power spectrum and calculate partition indices.
Distribution parameters were obtained and the optimum classification threshold then de-
cided. Our results showed good sensitivity and specificity rates. As the result, we find
that VAG analysis of the knee provides an economical alternative to X-ray examination in
osteoarthritic patients, which can also monitor of knee joint pathology at an early stage.
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