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Abstract. The pervasive existence of multi-view data has made conventional single
view data analysis methods to confront with great challenge. To exploit new analysis
technique for multi-view data has become one of active topics in the field of machine
learning. From the point of shared subspace learning, this paper focuses on capturing
the shared latent representation across multi-view by constructing the correlation in a
shared subspace. Different from the classical canonical correlation analysis (CCA) , a
more general model for learning a shared subspace was proposed, which not only provides
an explicit latent representation but also can leverage favorably the contributions from
different views for capturing the complementary information across multi-view. In order
to preserve well the local structure of data in the both shared subspace and original multi-
view feature spaces, a graph constraint is employed. Meanwhile, with the assist of prior
class label, the boosted discriminative ability of the proposed multi-view analysis model can
be achieved. The experimental results on the multi-view data retrieval and classification
verify the effectiveness of the proposed model.
Keywords: multi-view learning ,canonical correlation analysis (CCA), shared subspace
learning , cross media

1. Introduction. The recent years have witnessed a growing emergence of multi-view
data in the real world. Here, the multi-view is referred to as the data coming from diverse
domains or sources but with an underlying consistent agreement among them. Meanwhile,
each of views of a data can be characterized by a distinct attribute set or representation.
Considering a situation of web image understanding, a web image can be described not
only by the image content itself, but also at the same time by the surround document
text. On the common assumption that each of views can complement each other, multi-
view leaning is mainly concerned with exploiting the complementary information across
the multiple views to improve the generalization ability of learning model, which is great
different from those traditional machine learning methods on single view dada analysis. In
most cases, multi-view learning has demonstrated its obvious advantage over the learning
from single view [1, 4, 18].
From a technical point of view, multi-view learning can be categorized into Co-training [1,

2, 3, 4], multi-kernel learning [5, 6, 7]and shared subspace learning [8, 9, 10, 11, 23]. For
a more complete survey of the literatures on multi-view learning, please refer to [12]. As
one of semi-supervised learning methods, Co-training learning style was first proposed
by Blum and Mitchell et al. [1] to alleviate the difficulty arising from the problem of
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small size of labeled sample. Due to the encouraging success of Co-training in some ap-
plications, many substantial variants of it have devoted to derive effective and efficient
learning performance [2, 3, 4]. Multi-kernel learning (MLK ) aims to synthesize a unified
kernel model by the linear or nonlinear combination of fixed kernels [5]. Considering the
multi-view scenarios, one can construct each of base kernels on a corresponding single
view of the input data. Consequently, the MKL approach can be naturally extended to
handle multi-view data [6, 7].

Different from the former two multi-view learning mechanisms, the goal of shared sub-
space learning is to discover, for each multi-view data, a shared latent representation,
such that the complementary information embedded in each of heterogeneous views can
be well revealed [9]. One of the potential applications of shared subspace learning can be
for cross-media retrieval and information fusion [21]. For instance, in the shared subspace,
one can search a textual web page by taking an input image as query and vice versa. Clas-
sically, the most referred shared subspace learning method for multi-view data is canonical
correlation analysis (CCA) [8, 13], which was first proposed by Hotelling [8].To satisfy the
nonlinear condition, kernel canonical correlation analysis (KCCA) [14] has been proposed
by the application of the kernel trick. By encoding the class label of data into a new
view, CCA will be formulated as a least squares problem [15]. Some other variants of
CCA can be found in [16, 17]. In [18], Sharma et al. developed a generalized multi-view
analysis (GMA) method and showed that CCA is a special instance of GMA. By weighting
joint matrix factorization, Yu et al. [19] proposed a shared subspace model (Multi-output
Regularized Feature Projection, MORP) to build the correlation of multi-view data in
the shared subspace. In the works of Salzmann et al. [20], they proposed to find a latent
shared subspace in which the information is correctly factorized into shared and private
parts across different views.

Compared with CCA, the superiorities of MORP are two-fold: 1) an explicit shared la-
tent representation can be obtained; 2) the contributions from different views for capturing
the complementary information across multi-view to form the latent representation can
be well balanced. But the disadvantage of MORP is also obvious since it can’t deal with
the problem of out-of-sample efficiently. In this paper, we concentrated on the problem
of learning a shared subspace for multi-view data. Specifically, a general shared subspace
learning model was proposed to obtain a consistent representation of multi-view data,
which fully considers both the merits of CCA and MORP models. In order to preserve
the local geometrical structure of data in the both shared subspace and original multi-
view feature spaces, a graph constraint is introduced. Meanwhile, with the assist of prior
class label, the boosted generalization ability of the proposed multi-view analysis model
has been achieved.

The rest of this paper is organized as follows. In the Section 2, we give a background
review of related work. Section 3 presents the proposed general model for correlating
multi-view data in a shared subspace. The experimental results and performance analysis
are given in Section 4. Section 5 concludes the work of this paper.

2. Problem Statement and Preliminaries. Without loss of generality, we only con-
sider the scenario of two- view in this paper. Given two sets of observations X =
[x1, ..., xn]

T ∈ Rn×dx and Y = [y1, ..., yn]
T ∈ Rn×dy , {xi, yi}i=1,...,n denotes a paired repre-

sentations or views for the i-th sample. We assume that both {xi}i=1,...n and {yi}i=1,...n

are centered, i.e.
∑n

i=1 xi = 0 and
∑n

i=1 yi = 0. We use Ik for the k × k identity matrix,

|| C ||F=
√∑

i,j c
2
i,j to represent the Fresenius norm of matrix C, and Tr(·) to denote the
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trace of a symmetric matrix. In addition, for a matrix A, we use ai. to denote the i-th
row and a.j the j-th column of A.

2.1. Canonical Correlation Analysis (CCA). Proposed by H. Hotelling in 1936 [8],
Canonical Correlation Analysis (CCA) aims to seek pairs of basis vectors that maximize
the correlation between the projections of the paired variables onto the corresponding basis
vectors. The above correlation maximization problem can be formularized as follows:

argmax ρ = aT · Cxy · b (1)

s.t. aT · Cxx · a = 1, bT · Cyy · b = 1

where Cxx = XT ·X and Cyy = Y T ·Y are the non-singular within-set covariance matrices
and Cxy = XT · Y is the between-sets covariance matrix, a ∈ Rdx×1 and b ∈ Rdy×1 are
two corresponding projection vectors. Equivalently, this objective function (1) can be
re-written in the form of matrix as:

argmin Φ(A,B) = ∥X · A− Y ·B∥2F (2)

s.t. AT · Cxx · A = Id, BT · Cyy ·B = Id

where A = [a.1, ...a.d] ∈ Rdx×d, B = [b.1, ...b.d] ∈ Rdy×d, {a.i, b.i}i=1,...d is a pair of projection
basis vectors, AT · Cxx · A = Id, and BT · Cyy · B = Id restrict the d latent variables to
be linearly independent. By some mathematical manipulation, the optimization problem
given by Eq.(2) will lead to the following generalized eigenvalue problem:[

0 Cxy

Cyx 0

]
=λi

[
Cxx 0
0 Cyy

]
·
[
a.i
b.i

]
(3)

It is worth to note that, for the sample {xi, yi}, CCA does not provide explicitly a shared
latent representation ui.. In real application, the projections xT

i · A and yTi · B have

popularly been used to approximate ui., i.e. ui. =
xT
i ·A+yTi ·B

2
.

2.2. Multi-Output Regularized Feature Projection. Recently, multi-output regu-
larized feature projection (MORP) has been proposed by Yu et al. [19] to build the
correlation of multi-view data in the shared subspace by weighted joint matrix factor-
ization. In their work, the encoded class label vector for each data is used to form its
corresponding y view. However, it is straightforward to extend MORP to real multi-view
data. The objective function of MORP model is given by:

argmin Φ(Px, Py, U) = β∥X − U · Px∥2F + (1− β)∥Y − U · Py∥2F (4)

s.t. UT · U = Id

where β is a balance weight to trade- off the contributions for reconstruction from both
X view and Y view , respectively, U = [u.1, ..., u.d] ∈ Rn×d and its i-th row ui. denotes
the shared latent representation of the i-th sample in d -dimensional shared subspace,
Px and Py are the corresponding loading matrixes. Here, the purpose of imposing the
orthogonalization constraint on U is to guarantee the independence among the variables
in the shared subspace. As pointed out in [19], a generalized eigenvalue problem can
be formulated to seek the optimal solution to the Eq.(4). Compared with the classical
multi-view analysis method CCA, one can obtain explicitly a latent representation ui.

for the sample {xi, yi} . In addition, the balancing parameter β can well leverage the
contributions of each view for constructing the shared subspace. However, it is also
obvious that the MORP lacks the ability to deal with the problem of out-of-sample.

3. Correlating Multi-view Data in a Shared Subspace.
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3.1. A General Shared Subspace Model. Motivated by CCA andMORP, we propose
in this paper a more general model for correlating multi-view data in a shared subspace,
which favorably takes both the advantages of CCA and MORP. Specifically,the proposed
model is given as follows:

argmin Φ(A,B,U) = (1− β)∥X · A− U∥2F + β∥Y ·B − U∥2F︸ ︷︷ ︸
Reconstruction Term

+µ Ψ(U)︸ ︷︷ ︸
Regularization Term

(5)

s.t. UT · U = Id

where β and µ are two balancing parameters, the definition of U is the same as in Eq.(4).
Here, the reconstruction term based on joint matrix factorization term is used to corre-
lating multi-view data in a shared subspace. Generally, as shown in the following sub-
sections,the regularization term Ψ(U) can possesses in most of cases an quadratic form,
i.e. Ψ(U) = Tr(UT · Q · U) , where the symmetric matrix Q holds some kind of special
meaning according to the different definition of the regularization term. Thus, it can be
found obviously in this case that the objective function Φ(A,B,U) in Eq.(5) is convex.
The following Lemma shows a global optimum solution for the above convex optimization
problem can be achieved.

Lemma 3.1. Assume that A∗ and B∗ be the optimal solutions to Eq. (5) with Ψ(U) =
Tr(UT ·Q ·U) , then we will have A∗ = (XT ·X)−1 ·XT ·U and B∗ = (Y T · Y )−1 · Y T ·U
, with which Eq. (5) will be equivalent to the following maximization problem:

argmax Tr[UT · (G− µQ) · U ] (6)

s.t. UT · U = Id

where G = (1− β)X · (XT ·X)−1 ·XT + βY · (Y T · Y )−1 · Y T . Meanwhile, it also means
that the optimal U∗ can be obtained by seeking d eigenvectors of G−µQ, which correspond
to the first d biggest eigenvalues.

Proof. For the constrained minimization problem given in Eq.(5), it can be transformed
to a unconstrained form by introducing Lagrange multipliers:

argmin L(A,B, U) = (1− β)∥X · A− U∥2F + β∥Y ·B − U∥2F + µTr(UT ·Q · U) (7)

+Tr[λ · (UT · U − Id)]

where λ ∈ Rd×d is a symmetric matrix with λi,j ≥ 0 being a Lagrange multiplier. Setting
the derivative of L w.r.t A and B to be zero, we have:{

∂L
∂A

= 2(1− β)XT ·X · A− 2(1− β)XT · U = 0
∂L
∂B

= 2βY T · Y ·B − 2βY T · U = 0

By some mathematical manipulation, it is not hard to get A∗ = (XT ·X)−1 ·XT · U and
B∗ = (Y T · Y )−1 · Y T ·U . Then, plugging these two optimal A∗ and B∗ back into Eq.(5),
the optimization problem will become a maximization problem as shown in Eq.(6). This
completes the proof.

When we set to µ = 0, the formulation (5) will come down to:

argmin Φ(A,B, U) = (1− β)∥X · A− U∥2F + β∥Y ·B − U∥2F︸ ︷︷ ︸
Reconstruction term

(8)

s.t. UT · U = Id

For the formulation (8), we can find that it holds close connection with CCA, especially
when the optimal solutions of A∗,B∗ and U∗ satisfy U∗ = X · A∗ and U∗ = Y · B∗, they
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will achieve agreement with each other. In addition, a latent shared representation can be
provided explicitly, which shows an extremely significant difference from CCA. Hereafter,
we name this formulation by explicit CCA or eCCA for short.

3.2. Graph Regularized Shared Subspace Model. In some recent studies for sub-
space learning, the preservation of the local structure of the data in modeling the subspace
has received considerable attention and demonstrated good performance [21, 22] since it
reflects the intrinsic structure property very well. Particularly, the popularly adopted
method for preserving the local structure is graph constraint. In the following, we will
introduce based on Eq.(5) a graph regularized shared subspace model, namely GRSS.
Thus, in the shared subspace, the over-fitting problem of multi-view data can be avoided
to some extent. Specifically, the proposed GRSS is modeled as:

argmin Φ(A,B,U) = (1− β)∥X · A− U∥2F + β∥Y ·B − U∥2F︸ ︷︷ ︸
Reconstruction term

+ (9)

µ
∑
i

∑
j

wi,j∥
ui.√
di

− uj.√
dj
∥2F︸ ︷︷ ︸

Graph constrained regularization term

s.t. UT · U = Id

where wi,j is the edge weight to reflect the magnitude of strength of linkage between the
i-th and the j-th samples and di =

∑
j wi,j . In our work, we denote the edge weight wi,j

by wi,j =
wx

i,j+wy
i,j

2
with wx

i,j to be defined as:

wx
i,j =

{
exp

(
−d2(xi,xj)

2σiσj

)
xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 else
(10)

where d(xi, xj) is a distance function and the Euclidean metric is used in this paper
unless special specification, σi = median[d(xi, xj)]xj∈Nk(xi) , and Nk(xi) denotes the set
of k nearest neighbors of xi . The similar definition is for wy

i,j . Note that the graph

constrained regularization term Ψ(U) =
∑

i

∑
j wi,j∥ ui.√

di
− uj.√

dj
∥2F is applied to unfold the

underlying local geometrical structure of data.
By simplifying Eq.(9), we have:

argminΦ(A,B, U) = (1− β)∥X · A− U∥2F + β∥Y ·B − U∥2F︸ ︷︷ ︸
Reconstruction term

+µTr(UT · Lu · U)︸ ︷︷ ︸
Regularization term

(11)

s.t. UT · U = Id

where Lu = I − D−1/2 · W · D−1/2 is the normalized combinatorial Laplacian operator,
W = [wi,j]i,j=1,...n , and D = diag[d1, ...dn]is a diagonal matrix. Since the regularization
term Ψ(U) = Tr(UT ·Lu ·U) in Eq.(11) holds a quadratic form, following the Lemma 3.1,
we can easily get the corresponding optimal solution to Eq.(11) with Q = Lu.

3.3. Discriminant Shared Subspace Model (DSS). Now, let’s consider the classi-
fication task for multi-view data. In order to make the shared latent representation of
multi-view data in the shared subspace to be more discriminative, the class label informa-
tion is employed to form a discriminant regularization term. We call this shared subspace
model with discriminative ability by discriminant shared subspace model, or DSS for
short. Following the general shared subspace model as given in Eq.(5), we denote the
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DSS model by :

argmin Φ(A,B, U) = (1− β)∥X · A− U∥2F + β∥Y ·B − U∥2F︸ ︷︷ ︸
Reconstruction term

+ (12)

µ (
c∑

k=1

nk∑
i=1

∥ui. − ûk∥2F − ρ(
c∑

p=1

c∑
q=1

∥ûp − ûq∥2F )︸ ︷︷ ︸
Discrininative regularization term

s.t. UT · U = Id

where c is the number of class. For k = 1, ...c, nk is the number of samples of the k-th
class and ûk denotes the sample mean from the k-th class.

For making the following illustrations more clearer, we further introduce some symbols

by Sw = (E1−E2)
T (E1−E2),Sb = (E2−E3)

T (E2−E3),where E1 =


E[n1] 0 0 0

0
. . . 0 0

0 0 E[nc] 0
0 0 0 0

 ∈

Rn×n with E[nk] = [1, 1, ...1]T ·[1, 1, ...1] ∈ Rnk×nk , E2 =


D1 0 0 0

0
. . . 0 0

0 0 Dc 0
0 0 0 0

 ∈ Rn×n with

Dk = 1
nk
E[nk], and E3 =

1
n
E1.Using these symbols and by some mathematical manipula-

tion on Eq.(12), we have:

argminΦ(A,B,U) = (1− β)∥X · A− U∥2F + β∥Y ·B − U∥2F︸ ︷︷ ︸
Reconstruction term

+ (13)

µTr(UT · Sw · U − ρUT · Sb · U)︸ ︷︷ ︸
Discriminative regularization term

s.t. UT · U = Id

where Tr(UT · Sw · U) and Tr(UT · Sb · U) denote the total within- class scatter and
between- class scatter in the shared subspace U , respectively. According to Lemma 3.1,
the optimal solution to Eq.(13) can be sought by similarly solving a generalized eigenvalue
problem with Q = Sw − ρSb .

4. Experimental Results and Analysis.

4.1. Datasets and Experiment Setup. In our experiment, the evaluations on the
performance of the proposed model are carried out on two datasets : the UCI handwritten
digit dataset and the commercial video shot dataset . The details for these two datasets
are listed in TABLE 1 and TABLE 2 , respectively.

The UCI handwritten digit dataset contains ten handwritten digits 0-9 with 200 samples
for each of digits. For each sample, six sets of features are flourier coefficient, contour
correlation characteristics, Karhunen-Love expansion coefficient, pixel average, Zernike
moment , and morphological characteristics. The commercial video shot dataset was
originally built for automatic commercial detection [24]. We randomly select a subset
of it for performance evaluation, which consists of 900 commercial shots and 2100 non-
commercial shots. For each shot, both audio and visual features are extracted to form
the multi-view representations.
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Table 1. Details of the UCI handwritten digit dataset

UCI handwritten digit dataset
Features mfeat- fou mfeat- fac mfeat- kar mfeat- pix mfeat- zer mfeat- mor
Dimension 76 216 64 240 47 6

Table 2. Details of the commercial video shot dataset

Commercial video shot dataset
Features mfeat-aud mfeat-vis
Dimension 473 473

4.2. Performance Evaluation on GRSS Model. We first evaluate the performance
of GRSS model on the retrieval task of multi-view UCI handwritten digit dataset. The
compared shared subspace algorithms include CCA, MORP, eCCA and GRSS. In this
experiment, 90% samples are randomly selected to construct the retrieval dataset and the
remaining samples are used to serve as query instances. The retrieval performances on
group (fac, fou) and group (fou, kar) are shown in Fig. 1 and 2 .Compared with CCA,
MORP, and eCCA, GRSS achieves the best performance. Such results further validates
the effectiveness of the local structure preservation involved in GRSS.

Figure 1. Retrieval perfor-
mance comparisons on group
(mfeat-fac, mfeat-fou)

Figure 2. Retrieval perfor-
mance comparisons on group
(mfeat-fou, mfeat-kar)

4.3. Performance Evaluation on DSS Model. In essence, the proposed DSS model
is a supervised shared subspace learning method. Consequently, in this experiment , we
carry out performance evaluation on DSS model from the point of classification. For
both the UCI handwritten digit dataset and the commercial video shot dataset, 80%
samples are randomly selected to train the DSS model and the other 20% ones are used to
construct the test dataset. Such process is repeated 10 times and the average classification
accuracies are reported. For the UCI dataset, six groups of features are selected to form
the multi-view data.

Table 3. Classification performance comparisons on the UCI
handwritten digit dataset

X View Y View CCA MORP PLS eCCA DSS
Group 1 mfeat-fac mfeat-fou 0.8970 0.9720 0.9805 0.9653 0.9760
Group 2 mfeat-fac mfeat-kar 0.9710 0.9663 0.9768 0.9703 0.9930
Group 3 mfeat-fou mfeat-mor 0.7870 0.7823 0.8020 0.7943 0.9850
Group 4 mfeat-fou mfeat-pix 0.8698 0.9728 0.9808 0.9713 0.9943
Group 5 mfeat-kar mfeat-mor 0.9110 0.9228 0.9203 0.9193 0.9928
Group 6 mfeat-kar mfeat-zer 0.8020 0.9595 0.9593 0.9560 0.9758
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Table 4. Classification performance comparisons on the UCI
handwritten digit dataset

X View Y View CCA MORP PLS eCCA DSS
mfeat-aud mfeat-vis 0.9409 0.9457 0.9760 0.9810 0.9937

The classification results are illustrated in Table 3 and Table 4, respectively. As we
can see, the proposed DDS model shows more powerful discriminative ability than other
shared subspace methods on both two datasets. It is worth to note that eCCA is indeed
a simplified version of DSS without employing discriminative regularization term (see
Eq.(11) and Eq.(13)). The obvious advantage of DSS over eCCA shows the employment
of discriminative information is much helpful for performance improvement.

4.4. Impact of Parameter µ. As mentioned in Section 3.3, a parameter µ in both
GRSS and DSS models is used to trade-off the reconstruction term and regularization
term. Fig.3 shows the impact on retrieval performance on multi-view data group (fac,
fou) by varying the parameter µ of GRSS . In this case, it can be found that µ = 1000
gives rise to the best performance. As for the effect of parameter µ of DSS model, it is
obvious from Fig.4 that µ = 0.5 is the optimal.

Figure 3. Impact of parame-
ter µ of GRSS on retrieval per-
formance

Figure 4. Impact of parame-
ter µ of DSS on classification
performance

5. Conclusions. The latent representation across multi-view has many potential appli-
cations. In this paper, we first propose a more general shared subspace learning model
to capture the latent shared representation, which inherits nicely the merits of both the
classical CCA and factorization based MORP. We also showed that the proposed shared
subspace model is convex and to seek the global optimal solution comes down to solving
a generalized eigenvalue problem. In order to well preserve the local structure of data
in the both shared subspace and original multi-view feature space, a graph constraint
is employed. Meanwhile, with the assist of prior class label, we extended the proposed
general shared subspace model to a supervised one . Thus, the learned latent represen-
tation across multi-view can take much powerful discriminative ability. We carried out
the experiments on the multi-view data retrieval and classification tasks to verify the
effectiveness of the proposed model and showed promising results.
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