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Abstract. Automatic image annotation has been an active topic of research in com-
puter vision and multimedia areas for decades due to its potentials in semantic based
image retrieval. In this paper, we present a semantic context model for automatic image
annotation based on a novel conditional random field (CRF). To start with, a probabilistic
latent semantic analysis (PLSA) with asymmetric modalities is built to predict a candi-
date set of annotations with confidence scores, through which the semantic contextual
relations of image-to-image and image-to-word can be implicitly introduced into CRF.
Followed by the contextual potential function is formulated based on the semantic context
relationships between the annotation keywords by calculating their converted normalized
Google distance, during which the semantic context of word-to-word relations can be ex-
plicitly brought in CRF. Finally, according to the criterion of the maximum a posteriori,
the image annotation results can be obtained by inferring the indicator variables. The
chief novelty of our work is to exploit PLSA to predict a candidate set of annotations as
well as CRF to further explore the semantic context relationships for precise image an-
notation. Extensive experiments on the standard Corel5k dataset demonstrate that our
model is much more effective than several state-of-the-art methods in dealing with the
task of automatic image annotation and retrieval. In particular, this paper ends with a
summary of some important conclusions and highlights the potential research directions
of CRF in the field of semantic image analysis for the future.
Keywords: Automatic image annotation, CRF, PLSA, Semantic gap, Image retrieval

1. Introduction. With the explosive growth of the world wide web and rapidly growing
number of available digital color images, much research effort is devoted to the devel-
opment of efficient semantic image analysis systems. It is witnessed that a considerable
progress has been obtained in the past few years, yet, as a field, automatic image an-
notation (AIA) is still in its infancy and is not sophisticated enough to extract perfect
semantic concepts according to image low-level features, facing many challenges and lim-
itations. One of the main handicaps is the well-known semantic gap between low-level
visual features and high-level semantic concepts. Fortunately, a huge number of advanced
machine learning techniques have been proposed in the literature to narrow down it.

In general, most of the existing methods can be roughly classified into three categories,
i.e., classification-based method, probabilistic modeling method and graph-based method.
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To be specific, the classification-based method treats each semantic keyword or concept as
an independent class and assigns each to one classifier. Work such as linguistic indexing
of pictures [1], Bayes point machines [2] and supervised multiclass labeling [3] fall into this
category. The probabilistic modeling method aims to learn a relevance model to represent
the correlation between images and words. The early notable work includes the translation
model [4] which treated AIA as a process of translation from a set of blob tokens to a set
of keywords, cross-media relevance model (CMRM) [5] assumed the blobs and words were
mutually independent given a specific image, continuous space relevance model (CRM)
[6], multiple Bernoulli relevance model (MBRM) [7], dual cross-media relevance model
[8], probabilistic latent semantic analysis related models [9-12], latent Dirichlet allocation
(LDA) [13] and correlated topic model (CTM) [14], etc. In addition, the graph-based
method has already achieved much success in the field of semantic image analysis. As
the representative work, a graph model was developed to annotate images by exploring
the pairwise connections in multiple full-length NSCs [15]. In [16], a generalized manifold
ranking algorithm was put forward for image retrieval by representing images and their
relationships as a graph and propagating labeled information among images through the
graph structure. Subsequently the original manifold ranking algorithm was extended to a
new framework for image retrieval from two aspects involving scalable graph construction
and efficient computation [17], etc. Alternatively, it should be noted that the conditional
random field that can be viewed as an undirected graphical model has been widely used in
the area of computer vision. An early approach to image labeling was the multi-scale CRF
by including contextual features [18]. Subsequent work [19] came up with the ensemble
based on conditional random field (En-CRF) for multi-label image and video annotation.
Especially in [20], a single-layered segment based CRF was proposed rather than multi-
layered hierarchical CRF to integrate multi-scale features of pixels, segments and regions
for image labeling. Besides, a tree-structured CRF was introduced for interactive image
labeling [21] that explicitly took into account the dependencies among image labels. More
reviews on CRF based semantic image analysis will be summarized in the next section.

The remainder of this paper is organized as follows. Section 2 succinctly reviews the
CRF based semantic image analysis in the field of computer vision. Section 3 introduces
the basic principles of CRF as well as its performance comparison with the hidden Markov
models and maximum entropy Markov models respectively. In Section 4, the proposed se-
mantic context model is elaborated in detail from three aspects of its potential function,
parameter estimation and model inference. Section 5 reports and analyzes the experi-
mental results on the general-purpose Corel5k dataset. At length, we end this paper with
some concluding remarks and future work in Section 6.

2. Related Work. In recent years, conditional random field has become an effective
tool for a variety of different data segmentation and labeling tasks. In this section, CRF
based semantic image analysis will be comprehensively reviewed from the aspects of image
annotation, image classification, image segmentation, and other related applications.

2.1. CRF based image annotation. In the context of AIA, the early notable work was
the multi-scale CRF by including contextual features for image labeling [18]. Particularly,
the interaction at pixel-level had the form of a restricted Boltzmann machine. However,
it did not model the explicit notion of objects and its higher level nodes rather serve as
switches to different context and object co-occurrences. In [22], CRF was employed for
refining image annotation by incorporating the contextual relations between candidate
set of annotations. To consider spatial adjacency information during the assignment of
high-level objects to local image patches, a scene labeling model was developed in [23] by
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incorporating both local features and features aggregated over the whole image or large
sections for performing semantic region labeling. Besides, note that a series of CRF models
were constructed for image labeling [24,25], the primary difference was the formulation of
their potential functions by adopting Laplacian mixture and generalized Gaussian mixture
potentials respectively. In the literature [26], maximal margin CRF was formulated to
apply multiple visual features, but the feature weights were learned independently from
the image labeling. To reduce the performance variance and to exploit the correlation
between annotation words, a hierarchical two-stage CRF [27] was introduced to deal
with the problem of labeling images of street scenes by several distinctive object classes.
Subsequent work [28] integrated semantic context modeling and sparse multiple distance
learning by using kernel logistic regression in CRF framework for AIA, etc. To sum up, all
of the models mentioned above are able to obtain promising results. However, note that
the potentials of CRF are not only selected empirically and hand-tuned to have better
performance, but also heavily depend on the specific applications.

2.2. CRF based image classification. The aim of image classification, loosely speak-
ing, is to decide whether an image belongs to a certain category or not. From the liter-
ature, it can be easily observed that CRF has been widely applied in the task of image
classification. In [29], CRF was leveraged to address the spatial context from pairwise
relations. In particular, a two-layer hierarchical formulation was presented to exploit dif-
ferent levels of spatial context in images for robust classification. Subsequently a hidden
CRF was proposed for gesture recognition [30], which was for whole sequences classifica-
tion by viewing the segment labels as hidden variables, but the hidden variable structure
made the objective function non-convex and only local optimum could be achieved during
the process of training. Based on this scenario, a hybrid approach of PLSA and a clas-
sification oriented CRF (COCRF) was constructed for natural scene categorization [31],
in which a topic label was firstly assigned to each segment on the training data by PLSA
and then a COCRF model was trained based on these topic labels. In the work of [32],
a tree-structured conditional random field (TCRF) was formulated for image modeling,
whose main advantage was its ability to incorporate contextual features at several levels
of granularity that could be achieved by inducing a hierarchy of hidden variables over
the given label field. It should be noted that the discriminative nature of CRF combined
with the tree-like structure gave TCRF several advantages over other existing multi-scale
models. Moreover, TCRF was able to yield a general framework that could be applied to
a variety of image classification tasks. Beyond this, subsequent works [33,34] have also
developed dynamic CRF models for object labeling, etc.

2.3. CRF based image segmentation. Image segmentation, more precisely, is the pro-
cess of assigning a label to every pixel in an image such that pixels with the same label
share certain characteristics. It has been shown that the addition of higher order poten-
tials for CRF defined on cliques with more than two nodes can lead to better performance.
As a result, many researchers have considered variants of the traditional CRF models to
improve their performance [35-39]. In [35], a higher order CRF was formulated by defining
potentials based on sets of pixels (image segments). Although this approach robustly pe-
nalized inconsistent labeling within a segment but it failed to model dependencies between
segments. To solve this problem, an associative hierarchical CRF [36] was built to allow
associations in both same layers and between layers. All of the models could successfully
reason about pixels and/or segments, but they failed to incorporate the notion of object
instances, their location and spatial extent, into the recognition framework. Furthermore,
both of the two methods were highly dependent on the pixel-level annotations during the
training stage. Alternatively, recent works [37-39] formulated the higher order potentials
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of CRF for image segmentation in terms of the superpixel neighborhood. In particular,
recent advances in deep learning reveal that it is becoming increasingly common to per-
form CRF inference within a deep neural network to facilitate joint learning of the CRF
with a pixel-wise convolutional neural network (CNN) classifier [40-43]. Note that CRF
inference is able to refine weak and coarse pixel-level label predictions to produce sharp
boundaries and fine-grained segmentations. Based on this recognition, a recent work [40]
exploited higher order potentials defined over superpixels but did not strictly assume that
the segments shared boundaries with objects in an image. Afterwards CRF was applied to
refine semantic segmentation obtained from a CNN classifier. In [41], Bell et al. focused
on the material recognition and segmentation whereas in [42] Chen et al. combined the
pixel-level CRF with deep CNN based unary terms for the task of image segmentation.
Arguably, this did not fully harness the strength of CRF since it was not integrated with
the deep network. As a result, Zheng et al.[43] combined the strengths of both CNN
and CRF based graphical models in one unified framework for segmentation. In addition,
CRF has also been extensively applied in many other tasks such as text recognition [44],
language understanding [45], and 3D reconstruction [46], etc.

As previously reviewed, most of these models can achieve promising performance and
motivate us to explore better image annotation methods with the help of their excellent
experiences and knowledge. Thus in this paper, we present a novel semantic context model
for automatic image annotation. The main contributions of this work can be summarized
as follows. First, a PLSA model with asymmetric modalities is constructed to predict
a candidate set of annotations to define the local evidence function for the conditional
random field, through which the semantic contextual relations of image-to-image and
image-to-word can be implicitly introduced into CRF. Second, a normalized Google dis-
tance based contextual potential function is formulated to explicitly bring in the semantic
context relations of word-to-word in CRF. Extensive experiments on Corel5k validate that
our model is superior or highly competitive to several state-of-the-art approaches.

3. Conditional Random Field. Conditional random field was first proposed by Laf-
ferty [47] for labeling sequential data which was a linear-chain CRF. Subsequently it was
extended to 2D for image labeling in [48], in which the image was first divided into reg-
ular grids and features of these grids were then extracted. The CRF model was built
on these grid features with association and interaction potential functions. The asso-
ciation potentials denoted the likelihoods of the label given the observation of the grid
while the interaction potentials were the likelihoods of the interaction between neigh-
boring grid labels given the observation of neighboring grids. A CRF can be viewed as
an undirected graphical model in which each vertex represents a random variable whose
distribution is to be inferred, and each edge represents a dependency between two ran-
dom variables. In CRF model, the distribution of each discrete random variable yi in the
graph is conditioned on an input sequence x. Mathematically, the conditional probability
of y = (y1, y2, · · · , yn) given x is formulated as below:

P (y|x) =
eφ(y,x;Φ)∑
y′ e

φ(y′ ,x;Φ)
(1)

where
φ(y, x; Φ) =

∑
i

∑
k

θk1fk1(yi, i, x) +
∑
i,j

∑
l

θl2fl2(yi, yj, i, j, x) (2)

Eq.(2) is the potential function. i,j are used to index the vertexes, fk1(yi, i, x) and
fl2(yi, yj, i, j, x) denote the node feature function and edge feature function respectively,
Φ = (θk1, θl2) indicates the model parameters to be learned.
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Fig.1 depicts the graphical structures of CRF model. Especially for the 2D CRF model
shown in Fig.1 (b), which is an undirected probabilistic graphical model that is an ex-
tension of the linear-chain CRF. The dash circles denote the observed features at the
node, empty circles stand for the labels which are unknown for the test images, and the
interactions between these random variables are displayed as edges in the figure.

Figure 1. Graphical structures of the CRF model

In addition, it should be noted that the primary advantage of conditional random field
over hidden Markov models (HMM) is its conditional nature, resulting in the relaxation
of the independence assumptions required by HMM in order to ensure tractable inference.
Besides, CRF can avoid the label bias problem, a weakness exhibited by maximum en-
tropy Markov models (MEMM) and other conditional Markov models based on directed
graphical models. From the literatures, it can be clearly observed that CRF outperforms
both MEMM and HMM on a number of real-world tasks in many fields, including pattern
recognition, bioinformatics and computational linguistics.

4. The Proposed Semantic Context Model. In this section, we first provide a suc-
cinct introduction of PLSA model. Followed by the proposed semantic context model is
elaborated from three aspects of its potential function, parameter estimation and model
inference, respectively.

4.1. PLSA model. Probabilistic latent semantic analysis is a statistical latent class
model that introduces a hidden variable (latent aspect) zk in the generative process of
each element xj in a document di. Given this unobservable variable zk, each occurrence
xj is independent of the document it belongs to, which corresponds to the following joint
probability:

P (di, xj) = P (di)
K∑
k=1

P (zk|di)P (xj|zk) (3)

The model parameters of PLSA are the two conditional distributions: P (xj|zk) and
P (zk|di). P (xj|zk) characterizes each aspect and remains valid for documents out of
the training set. On the other hand, P (zk|di) is only relative to the specific documents
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and cannot carry any prior information to an unseen document. The expectation maxi-
mization (EM) algorithm is employed to estimate the parameters through maximizing the
log-likelihood of the observed data. The steps of it can be succinctly described as follows.

E-step. The conditional distribution P (zk|di, xj) is computed from the previous esti-
mate of the parameters.

P (zk|di, xj) =
P (zk|di)P (xj|zk)∑K
l=1 P (zl|di)P (xj|zl)

(4)

M-step. The parameters P (xj|zk) and P (zk|di) are updated with the new expected
values P (zk|di, xj).

P (xj|zk) =

∑N
i=1 n(di, xj)P (zk|di, xj)∑M

m=1

∑N
i=1 n(di, xm)P (zk|di, xm)

(5)

P (zk|di) =

∑M
j=1 n(di, xj)P (zk|di, xj)∑M

j=1 n(di, xj)
(6)

Note that if one of the parameters (P (xj|zk) or P (zk|di)) is known, the other one can be
inferred by using the folding-in method, which updates the unknown parameters with the
known parameters kept fixed, so that it can maximize the likelihood with respect to the
previously trained parameters. Given a new image visual features v(dnew), the conditional
probability distribution P (zk|dnew) can be inferred with the previously estimated model
parameters P (v|zk), then the posterior probability of words can be computed by the
following formula:

P (w|dnew) =
K∑
k=1

P (w|zk)P (zk|dnew) (7)

From Eq.(7), a candidate set of annotations with confidence scores (i.e., the posterior
probabilities of annotation keywords) can be easily obtained.

4.2. Our proposed model. It is known that the major advantage of CRF is that it can
provide a coherent probabilistic fusion approach by simultaneously taking into account
the individual probabilistic label assignment and the contextual relations between anno-
tation keywords. Moreover, CRF has its own unique ability to express data long-range
correlations and overlapping characteristics as well as to effectively overcome the label
bias problem due to the use of global optimization techniques. Based on this recognition,
we utilize CRF for automatic image annotation by incorporating the semantic context re-
lationships between annotation keywords. Without loss of generality, the proposed CRF
model can be described from three aspects of the potential function, parameter estimation
and model inference, respectively.

• Construction of the potential function

Note that in CRF the selection of potential function is quite flexible, and different CRF
models can adopt different forms of the potential function. Motivated by the work [12,22],
the potential function is formulated as below:

φ(y, x; Φ) = α1 ×
∑
i

ω1(yi, i, x) + α2 ×
∑
i,j

ω2(yi, yj, i, j) (8)

where ω1 indicates the local evidence of the state of yi. It depends on the image observation
x. ω2 is a prior parameter that indicates the contextual potential between the states of
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two variables yi and yj. Here, we take the local evidence as the logarithm of the confidence
scores provided by the PLSA model.

ω1(yi, i, x) =

{
logP (c(yi) = 1|x) , yi = 1

log[1− P (c(yi) = 1|x)], yi = 0
(9)

where c(yi) is used to indicate the concept and P denotes the posterior probability of the
annotation words according to Eq.(7). Besides, the normalized Google distance (NGD)
[49] is a distance function between two words obtained by just typing them as the search
terms in the Google search engine. It has a simple mathematical formulation but has a
solid theory foundation. In actual fact, NGD is a measure of contextual relation of the
words. Based on this recognition, the contextual potential is assumed to be independent
of x and can be obtained as general knowledge by the converted NGD as below.

ω2(yi, yj, i, j) =

{
− logNGD(yi, yj), yi = yj = 1

0 , otherwise
(10)

NGD(yi, yj) =
max(log f(yi), log f(yj))− log f(yi, yj)

logG−min(log f(yi), log f(yj))
(11)

where f(yi) and f(yj) denote the numbers of images containing labels yi and yj respec-
tively, f(yi, yj) is the number of images containing both yi and yj, G is the total number
of images in the dataset.

In contrast with previous methods, the main advantages of this formulation based CRF
lies in two aspects. On one side, the PLSA model based local evidence function is able
to incorporate more rich context information, i.e., the semantic contextual relations of
image-to-image and image-to-word, which can be implicitly introduced into CRF based
on the bag-of-visual-words construction. On the other side, the NGD based contextual
potential function is able to explicitly construct the semantic context relations of word-
to-word. Subsequently this two kinds of contextual relationships are embedded into the
basic CRF as its potential functions. It is worth noting that these two semantic relations
are complementary to each other and the combination makes them also benefit from
each other. Our primary goal is to solve the annotation problem by considering the
trade off between the computational efficiency and the precision performance. Extensive
experiments corroborate that the proposed model can markedly enhance the performance
of image annotation and retrieval but at the same time retain its simplicity and elegance.

• Parameter estimation of the model

Note that in our CRF model (Eq.(8)), the weight parameters Φ = {α1, α2} to be learned
are utilized to control the balance between local evidence and contextual potential.

L(Φ) =
∑
k

log(yk|xk)− α2
1

2σ2
− α2

2

2σ2
(12)

Since the task of CRF for image annotation is to infer the most probable labels given an
input image and the model parameters which are learned from the training set. As can be
seen from the above description, it is difficult to choose the weight parameters manually
since the local evidence and contextual potential come from different sources. Hence the
deepest gradient descent (DGD) algorithm is adopted to estimate the parameters Φ.

Algorithm 1 - Pseudocode of the parameter estimation
Input:

the training image set T , validation image set V .
Process:

Training PLSA model on T;
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Selecting words with top confidence scores generated by the trained PLSA on V;
Constructing indicator vector y for all images in V;
Computing local evidence by Eq.(9) and the contextual potentials of CRF by Eq.(10);
Learning Φ by maximizing the log posterior of Eq.(12) by the DGD algorithm;

Output:
weight parameters Φ = {α1, α2}.
• Annotation inferring based on the model

After learning the weight parameters of the proposed CRF model, the image annotation
results can be obtained by inferring the most likely state of each variable as follows.

y∗i = arg max
yi
P (yi|x; Φ∗), yi ∈ {0, 1} (13)

To be specific, its procedure can be described by the following Algorithm 2.

Algorithm 2 - Pseudocode of the CRF model inference
Input:

the learned weight parameter Φ, test image I.
Process:

Generating annotations of I by the trained PLSA;
Constructing the corresponding indicator vector;
Inferring the indicator variables by Eq.(13);

Output:
annotation results of I.

Note that the indicator vector in the pseudocode described above is constructed in such
a way that variable yi is true if the corresponding concept appears among the keywords
with top-10 confidence scores and also in the ground truth labels, otherwise it is false.

5. Experimental Results and Analysis. To make a fair comparison, the general-
purpose Corel5k dataset1 is employed to validate the effectiveness of the proposed CRF
model, which consists of 5,000 images from 50 Corel Stock Photo CD’s provided by [4].
Each CD contains 100 images with a certain theme, of which 90 are designated to be in the
training set and 10 in the test set, resulting in 4,500 training images and a balanced 500-
image test collection. Besides, the dictionary contains 260 words that appear in both the
training and testing set. It is worth noting that the normalized cuts algorithm (Ncuts) [50]
rather than JSEG [51] is applied to segment images into a number of meaningful regions.
The main reason is that JSEG only focuses on local features and their consistencies while
Ncuts aims at extracting the global impression of an image data. So Ncuts, to some
extent, can get a better segmentation result than that of JSEG (As can be seen from Fig.
2).

Figure 2. The segmentation results using Ncuts (mid) and JSEG (right)

1http://vision.sista.arizona.edu/kobus/research/data/eccv 2002/index.html
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In addition, since the focus of this paper is not on image feature selection, for each image
at most the 10 largest regions are selected and 809-dimensional visual features 2 (color,
texture, shape and saliency) are extracted for each region, which include 81-dimensional
grid color moment features, 59-dimensional local binary pattern (LBP) features, 120-
dimensional Gabor wavelets texture features, 37-dimensional edge orientation histogram
features and 512-dimensional GIST features respectively. Afterwards these features are
employed to train PLSA based on the EM algorithm. Without loss of generality, the most
commonly used metrics precision and recall of every word in the test set are calculated
and the mean of these values is applied to summarize the model performance. Similar to
[7], for a given semantic word, recall=B/C and precision=B/A, where A is the number of
images automatically annotated with a given word in the top-5 returned word list, B is the
number of images correctly annotated with that keyword in the top-5 returned word list,
and C denotes the number of images having that word in the ground truth annotation. In
addition, the mean average precision (mAP) is used to evaluate the retrieval performance
of our model.

mAP =
1

Nw

∑Nw

w=1
AP (w) (14)

with

AP (w) =

∑
i∈relevant precision(i)

rel(w)
(15)

Note that the AP of a query w is defined as the sum of the precisions of the correctly
retrieved images at rank i divided by the total number of relevant images rel(w) for this
query.

5.1. Results of automatic image annotation. To show the effectiveness of our model
proposed in this paper, we compare it with several previous approaches [5,6,7,9,52]. The
experimental results listed in Table 1 are based on two sets of words: the subset of 49
best words and the complete set of all 260 words that occur in the training set. From
Table 1, it is clear to see that our model outperforms all the others, especially the first two
approaches. Meanwhile, it is also superior to PLSA-WORDS, PLSA-FUSION, CRMR
and MBRM by the gains of 18, 14, 7 and 4 words with non-zero recall, 18%, 18%, 13% and
4% mean per-word recall together with 79%, 32%, 14% and 9% mean per-word precision
on the set of 260 words, respectively. Similarly, our model can also achieve consistent
good performance on the set of 49 best words. Note that CRMR listed in Table 1 denotes
CRM with rectangular regions as input. More details on it can be gleaned from reference
[7].

Table 1. Performance comparison on Corel5k dataset

Models CMRM CRM PLSA-WORDS PLSA-FUSION CRMR MBRM Ours
#words 66 107 108 112 119 122 126

Results on 49 best words
Recall 0.48 0.70 0.76 0.76 0.75 0.75 0.78
Precision 0.40 0.59 0.58 0.65 0.72 0.73 0.75

Results on all 260 words
Recall 0.09 0.19 0.22 0.22 0.23 0.25 0.26
Precision 0.10 0.16 0.14 0.19 0.22 0.23 0.25

In addition, Fig. 3 presents some examples of the annotations (only four cases are listed
here due to the limited space) generated by RVM-CRF and our model, respectively. As

2http://appsrv.cse.cuhk.edu.hk/∼jkzhu/felib.html.
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can be seen from Fig. 3, our model is able to generate more accurate annotation results
compared with the original annotations as well as the ones provided in literature [22].
Note that the enriched and re-ranked annotations compared to those of the ground truth
and RVM-CRF are underlined and italicized respectively. Taking the second image for
example, there exist four tags in the original annotation list. However, after annotation
by our model, its annotation is enriched by the other keyword “pergola”, which is very
appropriate and reasonable to describe the visual content of the image. Similarly, the en-
riched label “landscape” for the third image, and the enriched labels “plant & landscape”
for the fourth image, which further demonstrates the effectiveness and efficiency of the
proposed model in this paper.

Figure 3. Annotation comparison with RVM-CRF and Our model

To further illustrate the effect of the proposed model for automatic image annotation,
Fig. 4 displays the average annotation precisions of the selected 10 words “house”, “moun-
tain”, “snow”, “tree”, “building”, “water”, “beach”, “sky”, ”cat” and “bear” based on
RVM-CRF, PLSA-WORDS and our model, respectively. As shown in Fig. 4, the aver-
age precision of the proposed model is consistently higher than that of RVM-CRF and
PLSA-WORDS.

Fig. 5 displays the precision-recall curves corresponding to the PLSA-WORDS and our
model based on the Corel5k dataset, with the number of annotations from 2 to 10. As
observed from Fig. 5, the performance of our model is apparently superior to that of the
PLSA-WORDS, which further validates the effectiveness and efficiency of our model.

5.2. Results of ranked image retrieval. To further illustrate the effect of our model
for image retrieval, mean average precision (mAP) is also applied as a metric to evaluate
the retrieval performance. Here, we only compare our model with CMRM, CRM, MBRM,
PLSA-WORDS and PLSA-RW due to the mAPs of other methods cannot be accessed
directly from the literature. As shown in Table 2, our model is obviously superior to
the other methods except for MBRM. Specifically, compared with MBRM, it can get 3%
improvements on all the 260 words and words with positive recall, respectively.

From the perspective of probability theory, image retrieval can be seen as a procedure of
ranking images in the database according to their posterior probabilities of being relevant
to the query concept. To further stress the advantages of our model in image retrieval, Fig.
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Figure 4. Average precision of RVM-CRF, PLSA-WORDS and Our model
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Figure 5. Precision-recall curves of PLSA-WORDS and Our model

Table 2. Comparison of ranked image retrieval on Corel5k

Models All 260 words Words with recall > 0
CMRM 0.17 0.20
CRM 0.24 0.27
MBRM 0.30 0.35
PLSA-WORDS 0.22 0.26
PLSA-RW 0.26 0.30
Our Model 0.31 0.36

6 presents the retrieval results obtained with single word queries on several challenging
visual concepts being queries. Each row displays the top five matches to the semantic
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query “flower”, “coast”, “tiger” and “mountain” from top to bottom, respectively. The
diversity of visual appearance of the returned images further demonstrates that our model
also has good generalization ability.

Figure 6. Semantic retrieval results on Corel5k

6. Conclusions and Future Work. In this paper, we have presented a semantic context
model for the task of automatic image annotation based on a novel conditional random
field. First of all, a PLSA model with asymmetric modalities is constructed to predict a
candidate set of annotations with confidence scores. Afterwards the semantic relationships
between these candidates are built by using the CRF, in which the unary and pairwise
potential functions are formulated based on the posterior probabilities calculated by the
PLSA model and the normalized Google distance, respectively. Subsequently the deepest
gradient descent algorithm is adopted to estimate the parameters of the CRF. Finally, the
annotation results are obtained by marginalized probability reasoning. Conducted exper-
iments on Corel5k indicate that our model outperforms peer methods in the literature in
terms of accuracy, efficiency and robustness.

As for future work, there are still several issues to be further explored. First, due to
the advantage of CRF in general is that the conditional probability model can depend on
arbitrary non-independent characteristics of the observation, unlike a generative image
model which is forced to account for dependencies in the image, and therefore requires
strict independence assumptions to make inference tractable. The down side of applying
CRF is that inferring labels from the exact posterior distribution for complex graphs is
intractable. So how to further relax the independence assumption of CRF is a worthy
research direction. Second, the designs of association and interaction potentials are the
main task of CRF research. But in general, the potentials are selected empirically and
hand-tuned to have better performance. Moreover, this selection also heavily depends
on the specific applications. So it is highly desirable to formulate a general and unified
potential functions that can be applied to other multimedia related applications. Third,
since the conventional unary and pairwise potentials are rudimentarily defined as sum-
mation of weighted feature functions. However, potentials of this form usually need an
enormous number of features to render satisfactory results which makes their training
and inference to be an exhaustively difficult task. In addition, conventional potentials are
very sensitive to the parameter initialization and their training might get stuck in local
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optima. So how to solve these issues is also well worth exploring. Fourth, as can be seen
from the literature, most of the traditional CRF models are only up to second order and
it is difficult to incorporate large-scale contextual information. Hence how to construct
robust higher order potentials for CRF is also a very valuable research direction. Last
but not the least, due to the complementary nature of integrating two or more machine
learning techniques that can make them benefit from each other. Based on this recogni-
tion, how to efficiently hybridize CRF with other methods based on the tradeoff between
computational complexity and model reconstruction error is a valuable research direction
in the future.
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