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Abstract. While image steganography concerns with embedding secret data into an
image, Convolutional Deep Network (CDN) is considered as the best solution of steganog-
raphy detection after the promising results achieved by adapting deep networks to solve
this problem. Since the first use of CDN in steganography detection, the structure of
the CDNs is improved to enhance the detection accuracy of different such techniques.
Despite of the large number of researches on this field, there is a lack on researches that
study the effect of using the trained CDNs to build a real universal image steganography
detector. This paper presents the ability of combining the trained CDNs in a multi-
modal framework and studies the effect of this combination on the detection accuracy.
The presented framework performs detections on each classifying modality independently
to combine their estimations as a final inference to produce a universal image steganog-
raphy detector. This idea is applied to six of the latest CDN-based image steganography
detection techniques, which are GNCNN, IGNCNN, XuNet, YeNet, YedroudjNet and
the Improved IGNCNN by training them on stego-images generated using WOW, S-
UNIWARED and HILL steganography algorithms with payloads of 0.2, 0.3 and 0.4 bit
per pixel. Results show a slight decrease on the detection accuracy when compared with
the original detection accuracy due to the predicted similarity between the different im-
age steganography techniques. However, results also show that the multimodal image
steganography detection based on the Improved IGNCNN universal image steganogra-
phy detection presents the best performance when compared with other detectors based
on the other five image steganography tested detectors.

Keywords: Steganography Techniques, Deep Convolutional Networks, Multimodal
Framework, Deep Learning, Steganography Detector.

1. Introduction. Image steganography is the process of covering a secret message with
an image. The image (cover-image) and the secret message are the inputs to the image
steganography algorithm, which generates a new image that has the same look of the
cover-image but contains, within its pixels, the secret message. This new image is called
stego-image. There are a lot of techniques [1, 2] to manipulate the carrier image to hide
the secret message in order to improve the undetectability of such hidden information.
Some of the commonly used techniques are as follows:

1. Least Significant Bit (LSB): The idea behind LSB embedding is that if we change
the last bit value of a pixel, there won’t be much visible change in the color. For
example, 0 is black. Changing the value to 1 won’t make much of a difference since
it is still black, just a lighter shade [3].
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2. Spread Spectrum: In this type of image steganography, the secret message is
first concealed in a much lower power noise than the cover-image. Then, this noise
is added to the cover-image to generate the stego-image. Spread spectrum image
steganography approaches are presented in many researches, such as [4, 5].

3. Masking: In this technique, the luminance of selected parts of the image is changed
in order to hide the secret message. This method adds redundancy to the secret
message in order to improve the stego-object resistance to lossy techniques. Thus,
this technique is more effective than LSB when the cover-image is a JPEG image [6].

4. Statistical: In statistical image steganography, the statistical properties of the
cover-image are considered. The idea of this type of image steganography is to use
“1-bit” steganography but the changes in the cover-image are in certain statistical
properties only, not in the whole cover [7].

5. Distortion: Here the message to be hid is concealed in the cover-image by distortion
and then the cover-image and stego-image are compared at the stage of decoding.
If the steganography detector finds the original image, the secret message can be
retrieved, which makes image steganography less secure [8].

6. Adaptive: While image steganography aims to hide secret data in a cover-image, the
detection probability of that secret data from the third parties has to be minimized.
In order to minimize the steganography detectability, Adaptive image steganography
appears. It embeds the secret data in selected areas of the image based on the image
itself, which successfully reduces the steganography detectability. A set of well known
adaptive image steganography are described below.
• Edge-Adaptive: This technique embeds the secret message in pixel pairs. If

the differences between the absolute values of these pairs are relatively large, it
indicates an evidence on the presence of steganography [9].

• HUGO: It is the first steganography technique to use the syndrome trellis codes
[10]. This technique uses the difference between four neighbors (pixels) as a
feature set to perform secret embedding with minimal distortion [11].

• WOW: It is one of the most efficient adaptive image steganography techniques.
It uses wavelet filters in order to embed the secret data. It also aims to avoid
the changes, which are resulted from the embedding process [12].

• S-UNIWARD: It is the spatial version of the UNIWARD. Like WOW [12],
S-UNIWARD is wavelet-based. It uses directional filter banks in addition to a
special distortion function [13].

• HILL: It uses a low-cost function with clustered values. The anonymous cost
function discovers less predictable areas in the image using a High Pass Fil-
ter (HPF). It also uses two Low Pass Filters (LPFs) for the output values of
clustering process [14].

The state of the arts of the most steganography detection techniques can only detect
whether an image has a secret message or not. As well, the implemented steganography
technique and the underlying payload would not be recognized. In [15], the presented
approach makes the convolutional layers wider in order to reinforce the effect of linear
collusion attack on the reunion network structure. In [16], a truncation activation func-
tion at the pre-processing phase of the presented DL-based steganography detector is used
with HPFs in order to improve detection rate and accelerate the training phase. In [17],
a new model is presented that is based on a histogram of pixel structuring elements with
different patterns. The new model constructs the feature set for training the steganogra-
phy detector and distinguishes between the cover-images and the stego-images. In [18], a
hybrid technique of both model parallelism and data parallelism is presented with cyclic
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Figure 1. Steganography detection based on manual extraction of char-
acteristics (top side) and steganography detection based on deep learning
techniques (bottom side) [23].

learning rate and LReLU activation function during the learning phase for faster con-
vergence towards enhanced detection accuracy. In [19], a novel deep residual network
architecture is presented with reduced convolutional layers in a data-driven manner. Al-
though such aforementioned techniques achieve significant detection accuracy, the secret
message as well as its implemented steganography technique and payload, cannot be de-
termined. In [20], a deep learning (DL)-based algorithm is suggested for steganography
detection in images of varying sizes without retraining their parameters. These steganog-
raphy techniques are capable of embedding the secret message with different payloads in
order to confront the techniques of steganography detection. In this paper, a multimodal
DL-based image steganography detection framework is proposed. It consists of three main
consecutive stages, which can full fill with any size of images and can be adopted to cope
with newly published DL-based techniques for steganography detections.

The rest of this paper is organized as follows. In Section 2, the related work is pre-
sented. In Section 3, the practical implementation of the universal multimodal DL-based
steganography detection framework is proposed. The experimental work setup and results
are reported in Section 4. Finally, the main conclusions are drawn in Section 5.

2. Related Work. Gaussian Neuron Convolutional Neural Network (GNCNN) [21] is
the first DL-based approach with results comparable to those of Spatial Rich Model
(SRM) [22], which depends basically on the residual samples of neighboring noise as
features. In order to strengthen the noise signal, a HPF is used. GNCNN [21] consists of
one pre-processing layer, five convolutional layers and three fully connected layers. In it,
an average pooling is used as a pooling layer, a Gaussian activation function is used in the
hidden layers and a Softmax is used for classification module. No batch normalization or
absolute layer are used. Authors in [24] present a new DL-based steganography detection
approach called XuNet. This network tries to enhance the statistical modeling by using
an absolute (ABS) layer and 1 × 1 convolutional kernels. The presented approach also
uses batch normalization layer in order to prevent the network stuck in a poor minima and
enhance the updating process of the biases parameters. This approach gets the advantage
of using different activation functions. It uses TanH [25] for the first two layers and and
ReLU [26] activation functions for the rest. This variety of activation functions avoids the
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over-fitting problem. In [23], a transfer learning is used to enhance the performance of
GNCNN. The results show that transferring the pre-trained CNN features for detecting
high payload stego-images of one steganographic algorithm can improve feature learning
for detecting lower payload stego-images of that specific steganographic algorithm. This
approach is called Improved Gaussian Neuron CNN (IGNCNN).

YeNet DL-based steganography detection is introduced in [27]. YeNet uses a set of
trainable HPFs instead of using the traditional ones for noise extraction process. Those
trainable filters are initialized with the coefficients of SRM filters. The TLU activation
layer [27] is presented for first time in steganography detection to increase Signal to Noise
Ratio (SNR).

Yedroudj-Net, an image steganography detection approach presented in [28], is a com-
bination of XuNet [24] and YeNet [27]. It uses the TLU activation function [27] and
the batch normalization layer. It also uses the SRM filter as initial values for the first
convolutional layer. Simply it uses all the best configurations in XuNet and YeNet. The
structure of YedroudjNet [28] network is as follows: one convolutional layer with thirty
filters as a pre-processing layer, five convolutional layers as feature extractors and three
fully connected layers. An average pooling is used after all convolutional layers except for
the first one. It uses two activation functions in the hidden layers which are: TLU [27]
and ReLU [26], and softmax for classification. In addition, it uses batch normalization
and an absolute layer exists after the first convolutional layer.

Authors in [29] update YeNet to effectively detect stego in images with high resolution.
The CDN is trained on images of small resolution in order to adopt the network to high
resolution ones. Improved IGNCNN [30, 31] is an approach for blind image steganography
detection based on transfer learning method. In this approach, a Gaussian HPF is used as
a pre-processing layer and the CNN learning rate is changed dynamically. The Gaussian
HPF enhances payload noise residuals extraction process that affects the detection accu-
racy positively. The dynamic learning rate of the pre-trained and the fine-tuned CNNs
minimize the error that leads to improve the detection accuracy.

Authors in [32] present parallel computing by multiple GPUs, in order to accelerate
the training of DL-based steganography detection process [30] as a case study. Model
parallelism is applied to the classification module and data parallelism is applied to the
feature extraction module that accelerates the training process. A variable batch size
is also proposed as an optimization approach. A small batch size in the fully-connected
layers helps CNN model to converge faster to a better minima. The difference in structure
between the DL-based image steganography detection approaches, mentioned before, is
presented in Table I where, Pre. is the number of pre-processing layers, Conv. is the
number of convolutional layers, Fully. is the number of fully connected layers and Act.fn
is the activation function. All the approaches are trained and tested using Boss-Base [33]
image dataset.

Despite of the big number of researches in the field of image steganography detec-
tion, the effect of appending more than one CDN to reach a practical universal image
steganography detection tool is not studied. Each DL-based image steganography detec-
tor is trained to detect set of image steganography techniques such as S-UNIWARD [13],
WOW [12], and HILL [34], separately. However, combining these trained DL-based tech-
niques and evaluating their performance for a random image exposed to unknown image
steganography technique is not investigated yet. This goal will be the main concern of
the paper.

3. The proposed framework for the DL-based image steganography detector.
The main purpose of this work is to find a way to evaluate the performance of a practical
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Table 1. Network structures of different DL-based image steganography
detection modalities.

Approach Pre. Conv. Fully. Act.Fn
GNCNN [21] 1 5 3 Gaussian
IGNCNN [23] 1 5 3 Gaussian
XuNet [24] 1 5 2 ReLU
YeNet [27] 0 8 1 ReLU
YedroudjNet [28] 1 5 3 ReLU
Improved IGNCNN [30] 1 5 3 Gaussian

implementation of DL-based image steganography detector, blindly, without any prior
information on being exposed to any steganography technique or not. The proposed
framework for the practical implementation combines more than one pre-trained CDN,
in an add-on manner, to simulate a real case study of universal image steganography
detector. In such a case, neither the steganography technique nor the applied payload
value, are known.

In the proposed framework, typical CDNs can be trained on images, which are exposed
to different steganography techniques with different payloads, then combined together to
generate the mulimodal DL-based steganography detection framework. The estimations
provided by each classifying modality are fused to yield an overall class estimation that
defines the most probably implemented steganography technique as well as the payload
as shown in Fig.2.

The proposed framework for practical implementation of the multimodal DL-based
image steganography detection, in Fig.2 consists of three main stages:

• A pre-processing stage: In the first stage, the tested images, are divided into equally
sized sub-images. Each sub-image is of size n × n, where n × n is the size of each
image in the data set, upon which the CDNs of the framework are trained before.
Each sub-image is applied individually to each classifying modality of the next stage.

• A multimodal DL-based engine stage: This stage is the main core of the proposed
framework. It consists of a number of pre-trained CDNs, with a different dataset, in
a parallel classifying modalities. Each dataset was exposed to a different steganogra-
phy technique with a different payload value. This stage takes the responsibility of
detection of stego-images with an accuracy associated to each DL-based classifying
modality for steganography detection.

• A detection stage: This final stage receives the count of sub-images of the tested
images, resulting from first stage, and evaluates the summation of ( Stego Detected
/ Stego NOT Detected ) per sub-image for all sub-images of each tested image.
This stage performs the final decision of the tested image of being stego-image or
a clean-image. In work, when the count of sub-images equals or exceed the half of
the counted value, delivered from the pre-processing stage, it means that the tested
image is stego-image.

In the proposed practical framework, when more than one DL-based classifying modal-
ity infers that the tested image is a stego-image, then the final decision is that the tested
image is a stego-image by the steganography technique and the payload associated with
the classifying modality of the highest detection probability.

Any applied CDN for steganography detection is a one, which has been trained before
on a data set previously exposed to a specific steganography technique at a certain payload
value. Furthermore, the dataset used for training contains a set of images of a certain size
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Figure 2. Illustration of the multimodal DL-based framework for image
steganography detection, in which each red dotted box represents a CDN
classifying modality.

that matches the size of the input layer of the implemented CDN. Practically in real cases,
the images that will be checked for being stego-images or not, have different sizes with
different probabilities of being exposed to a large number of steganography techniques at
a wide range of probable payloads. Therefore, the practical characteristic of the proposed
framework depends on its structure. It contains a pre-processing stage to subdivide the
image under test into a count of sub-images, each with the same size that copes with the
structure of the implemented CDN. This count is then transferred to a final stage in the
proposed framework that decides, based on results on the sub-images of the same image
under test, if it is a stego-image or not.

The add-on manner of the proposed framework comes from its capability to add a
new classifying modality of the implemented CDN but trained with a new steganography
technique at a certain payload, without major changes in the first stage nor the final
one. This newly added classifying modality receives sub-images, of the image under test,
from the first stage of the framework and delivers checking results of these sub-images
to the final decision stage. The final stage, in turn, examines the results pool of checked
sub-images, each attached with a unique identifier of the DL-based classifying modality
that produced these results, and then it decides if the tested image is then a stego-image
or not.

4. Experimental Work and Results.

4.1. Implementation Setup. Like many applications that require GPUs in order to
speed up the training step [35], experiments in this paper are performed on a device with
two processors of Intel Xeon Silver, 128 GB RAM (only 36GB RAM are actually used
during training) and two Tesla V100 GPUs each with 5120 CUDA cores. The two GPUs
can communicate amongst themselves simultaneously at the full PCI-Express 2.0 rate
(about 6GB/sec) through a PCI-Express switch. Convolutional layers weight decays are
0 and 0.01 for the fully connected layers. A linearly decayed learning rate ranging from
0.01 to 0.00001 is used. Momentum of 0.9 is used. The training of the network is carried
out using the CUDA-convnet2 in [36].

4.2. Dataset Description. The dataset used for experiments is the standard BOSS-
base 1.01 image dataset [33]. BOSSbase 1.01 contains 10000 gray-level cover-images of
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size 512 × 512. All the dataset images are subdivided into 4 sub-images, each of size 256
× 256 pixels. A set of 4 sub-images, of each image in the data set, is used for training
purposes. That results in a data set of 40000 images for training each DL-based classifying
modality for steganography detection. Each data set, of 40000 sub-images, is divided into
two halves, each of size 20000 images. A single half data set is exposed to a unique
image steganography technique and stored separately in each case for the technique used,
while the other half is used in the training process. For exposing dataset to different
steganography techniques, different technique at each time, with a specific payload in bits
per pixel (bpp), the following cases are elected:

• S-UNIWARD steganography technique with payloads: 0.2, 0.3, and 0.4 bpp.
• WOW steganography technique with payloads: 0.2, 0.3, and 0.4 bpp.
• HILL steganography technique with payloads: 0.2, 0.3, and 0.4 bpp.

The previous task results in creating nine different datasets. Each dataset, which contains
20000 stego-images accompanied with the first half of 20000 clean-images, is used for train-
ing a separate DL-based classifying modality for image steganography detection. That
constitutes a nine-based engine core in the framework for the practical implementation of
the multimodal DL-based image steganography detection.

4.3. Performance Evaluation Metrics. Detection error (PE), the lower the better, is
used as the comparison metric. PE is computed as shown in 1 where, PFA is the false alarm
rate calculated in Equation. 2, and PMD is the missed detection rate. PMD is calculated
as in Equation. 3, where PD is the detection rate, which calculated by Equation. 4.True
Positive (TP) is the count at which the actual value was positive, and the model predicted
a positive. True Negative (TN) is the number of times the actual value was negative, and
the model predicted as a negative value. False Positive (FP) is the count of the actual
negative values predicted as positive values. False Negative (FN) is the opposite to FP,
i.e., count of actual positive values predicted as negative values.

PE = minPFA

1

2
(PFA + PMD(PFA)) (1)

PFA = 1 − Specificity = FP/(FP + TN) (2)

PMD = 1 − PD (3)

PD = Sensitivity = TP/(TP + FN) (4)

4.4. Experimental Results. This section shows the experimental results of each DL-
based classifying modality, separately, using a single different DL-based image steganog-
raphy detection approach. The competing approaches are: GNCNN [21], IGNCNN [23],
XuNet [24], YeNet [27], YedroudjNet [28], and the Improved IGNCNN [30]. Then, it de-
scribes the overall performance of the practical proposed framework for DL-based image
steganography detection (i.e., a case study of nine-modalities based-engine).

The detection errors, using different DL-based approaches of steganography detection
for stego-images, exposed to S-UNIWARD, WOW, and HILL steganography techniques
at payloads of 0.4, 0.3 and 0.2 bpp, are reported in Table 2.

The detection error of the framework of the nine multimodal image steganography
detection based on models of the competing approachs: GNCNN [21], IGNCNN [23],
XuNet [24], YeNet [27], YedroudjNet [28] and the improved IGNCNN [30] are presented
in the Table 3. In this table, it can be noticed that the Improved IGNCNN [30] can
achieve the minimum detection errors among other five recent DL-based approaches for
steganography detection.

For a detailed explanation of the performance evaluation of the proposed framed work
for the practical image steganography detector, based on Improved IGNCNN in its nine
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Table 2. Detection error of S-UNIWARD, WOW, and HILL based stego-
images with payloads of 0.4, 0.3 and 0.2 bpp using different DL-based ap-
proaches of steganography detection.

Steganography S-UNIWARD WOW HILL
Payload bpp 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4
GNCNN [21] 37.43 30.62 20.08 37.4 27.88 20.28 37.50 29.05 20.50
IGNCNN [23] 34.38 28.42 22.05 34.38 24.87 19.62 34.40 26.70 21.02

XuNet [24] 39.1 32.84 27.2 31.65 20.7 18.15 37.6 30.12 20.67
YeNet [27] 40 35.8 31.2 24.35 20.36 17.07 39.4 34.9 32.45

YedroudjNet [28] 36.7 29.61 22.8 27.8 19.46 14.1 35.66 28.64 23.1
Imp. IGNCNN[30] 27.62 18.41 15.17 23.3 16.81 11.15 26.55 22.84 15.32

Table 3. Detection error of the proposed multimodal steganography de-
tector using different approaches of CDN based steganography detections.

Steganography Detector Detection Error (%)
GNCNN [21] 36.58
IGNCNN [23] 32.48

XuNet [24] 31.17
YeNet [27] 33.04

YedroudjNet [28] 26.43
Improved IGNCNN [30] 19.22

Table 4. The experimental details of detection capability of the proposed
multimodal steganography detector, based on the Improved IGNCNN [30].

Steganography Clean S-UNIWARD WOW HILL
Payload bpp - 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

Catched images 1877 1429 1632 1697 1488 1664 1743 1414 1517 1694
Missed images 123 571 368 303 512 336 257 586 483 306

classifying modalities based engine, more detailed results are listed in Table 4. The results
in Table 4 show 16155 catched images and 3845 missed images of total 20000 tested images.

Table 5 lists the experimental results of detection capability of the proposed image
steganography detector, based on Improved IGNCNN in each classifying modality of
the nine-modalities based engine, with data sets of different efficient steganography ap-
proaches at payloads 0.2, 0.3, and 0.4 for each approach. Table 5 shows a more detailed
detection capability of the proposed image steganography detector, based on count of
sub-images detected for each tested images. The header of that table shows count of
sub-images detected of a total of four sub-images of each tested image (two sub-images
or more means a stego-image). The total count may be higher in value than that of
the stego-image catched due to some false detection, i.e., detecting of clear images as
stego-images

5. Conclusion. This paper presents a proposed framework for practical implementation
of a universal multimodal DL-based image steganography detection system. It consists
of three main consecutive stages: the pre-processing, the core, and the final inference.
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Table 5. A detailed detection capability of the proposed multimodal de-
tector, based on the detected count of sub-images in each tested image.

Stego Catched 4 3 2 Total
0.2 SUNIWARD 1429 121 405 905 1431
0.3 SUNIWARD 1632 317 843 502 1662
0.4 SUNIWARD 1697 918 651 131 1700

0.2 WOW 1488 381 418 714 1513
0.3 WOW 1664 462 693 513 1668
0.4 WOW 1743 1002 569 200 1771
0.2 HILL 1414 212 484 731 1427
0.3 HILL 1517 371 746 407 1524
0.4 HILL 1694 886 512 307 1705

Total 14278 14401

The middle stage, the core engine of the framework, is implemented in nine classifying
modalities. It has an add-on manner, which can be adopted in future to cope with new DL-
based techniques of steganography detection. The proposed multimodal framework is well
suited for the practical implementation for detection of stego-images, of any resolution,
with an efficiency of 19.22% detection error. The proposed framework can detect stego-
images, which are previously exposed to any steganography technique at any payload of
0.4, 0.3, and 0.2 bpp.
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