
Journal of Information Hiding and Multimedia Signal Processing ©2014 ISSN 2073-4212

Ubiquitous International Volume 5, Number 2, April 2014

A New Compressed Sensing Algorithm Design Based
on Wavelet Frame and Dictionary

Xiuyan Sun1,Wenmin Song2, Ying Lv1 and Linlin Tang3

1 : Department of mechanical and electrical engineering
2 : Department of electronic and information engineering

Laiwu Vocational and Technical college
Laiwu, Shandong Provience, China

XiuyanSun@126.com;kelemi@163.com;lvying-1982@163.com

3 :School of computer science and technology
Harbin Institute of Technology Shenzhen Graduate School

University Town, Shenzhen
linlintang2009@gmail.com

Received November, 2013; revised November, 2013

Abstract. Compressed sensing has been paid a lot of attention for its contribution for
image restoration, image reconstruction and image representation. Two most common
research orientations are the basic theory research and the application research respec-
tively. A novel design for compressed sensing frame based on the wavelet frame and
dictionary is proposed in this paper. It belongs to the basic theory research and the good
performance in the experiments show its efficiency.
Keywords: Compressed Sensing, Wavelet frame, Sparse Representation, Dictionary

1. Introduction. The compressed sensing methods are proposed for improving the ef-
ficiency of the classical Nyquist sampling method. Its main work is to exploit sparsity
in signal processing. As we all know, a spare signal is one that has few non-zero entries
relative to its dimension. A lot of signals are either sparse in their original form or can
be represented as a sparse signal in a transform domain. And the spare property is very
important for image compression and restoration, echo cancellation, channel equalization,
and so on. In traditional view, signals are first sampled at Nyquist rate or more and then
compressed for efficient storage and/or transmission. In Compressed Sensing (CS) view,
the signal is acquired directly in compressed form. Some early work has been done on
this topic such as the reference [1-7]. The main work for CS is to design a proper matrix
named sensing matrix which is combined with the transform matrix and the projection
matrix [8-10]. So, various transforms are introduced in this research. Wavelet analysis
of good time-frequency characteristics widely used in the image compression field has
become one of the mainstream technologies, which has the high decorrelation and energy
compression efficiency, and can effectively remove the blocking effect and mosquito noise
[11,12,13]. It has been used in the CS research for all its good properties [14,15,16]. In
this paper, we present a novel wavelet based CS fame. Section 2 will give some related
knowledges about the compressed sensing and wavelet frame. The proposed design will
be introduced in the section 3. Then the experimental results will be shown in the section
4. The conclusion will be given in the section 5. At last, the reference will be listed.
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2. Related Work.

2.1. Compressed Sensing. The basic process for CS can be shown as below. For a
finite dimensional signalx ∈ Rn∗1 CCA is multivariate statistical analysis which study
two groups of random variable relationship between the statistical method [10]. Based
on the idea of CCA, we set up the correlation criterion function between two groups of
feature vectors, and calculate typical projection vector set of the two groups according
to the criterion. Then combined canonical correlation characteristics are extracted for
recognition. The framework of the multimodal biometric algorithm as figure 1.

2.2. Compressed Sensing. The basic process for CS can be shown as below.
For a finite dimensional signal ∈ RN×1, suppose any signal in RN space can be expressed

by a normal orthogonal base of this space ψ = [φ1, φ2, · · · , φN ], then we have the following
linear combinations expression.

x =
N∑
i=1

φiαi = ψα (1)

The above formula can be called either as the equivalent representations of the signal
x or the linear decomposition. α =< x,φi > is the projection coefficients and α = ψTx is
a projection vector. ψ = [φ1, φ2, · · · , φN ] is an orthogonal matrix, α and x and are two
vectors with N ×1−dimension. ψ is a N ×N matrix. The CS theory believes that if only
the non-zero coefficients number of the transformed signal K << N then x is sparse on
the base ψ or it can be compressed. The signal x is called K− sparse. If the formula (1)
is some kind of sparse representation for the signal x, then ψ can be called a sparse base.

If a signal satisfies the sparse condition, it can be projected into an observation matrix
space and the projection values are called the observation sequence recorded as y. This
process can be shown as below.

y = Φx (2)

Here, Φ is a N×N matrix and y is a N×1 column vector. As we can see from the above
formula (2), the sequence y after the observation process has a smaller dimension value
M than the original signals N which means that the signal has already been compressed
and the data after compression is much smaller than the Nyquist sampling data. So a
compression ratio definition can be given as below.

q =M/N (3)

If we bring the formula (1) to the (2), then we can get the following expression (4).

y = Φx = Φψα = ∆α (4)

Then matrix ∆ = Φψ can be called the sensing matrix. The compressed sensing
theory believes that if the observation matrix satisfies the Restricted Isometry Property
condition and the Irrelevant Characteristics [17], and the signal x is also a K− Sparse
(K < M << N), then we can get the sparse coefficient x through solving a zero normal
optimization problem shown below.

min ||α||0 s.t. y = ∆α (5)

Then you can get the signal x using the formula (1).
As we can see from above, the traditional sampling compression and compressed sensing

process can be shown in the following figure 1 (a) and (b).
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(a)

(b)

Figure 1. Traditional Sampling Compression Process (a) and the Com-
pressed Sensing Process (b)

2.3. Wavelet. As an efficient tool for signal processing, wavelet has been widely used in
many research areas.
If we let

ϕj,k(x) := 2
j
2ψ(2jx− k), j, k ∈ Z (6)

Then, the wavelet transform can be expressed as

(Wψf)(
k

2j
,
1

2j
) =< f, ψj,k > (7)

Generally speaking, every function f ∈ L2(R) can be expressed as the following formula
(8).

f(x) =
∞∑

j,k=−∞

< f, ψj,k > ψj,k(x) (8)

Though the coefficients are values of the integral wavelet transform of relative to ψ, the
series is not necessarily a wavelet series. To qualify as a wavelet series, there must exist
some function ψ̃ ∈ L2(R), such that the dual basis {ψj,k} in the above series is obtained

from ψ̃ by

ψj,k(x) = ψ̃j,k(x) (9)

here, as usual, the notation

ψ̃j,k(x) := 2
j
2 ψ̃(2jx− k) (10)

is used.
The reason for wavelet can be used in the CS is that it produces a large number of

values having zero, or near zero, magnitudes. In fact, there have been some CS works
based on the wavelet proposed recently [18,19].

2.4. Wavelet Frame. Different from the wavelet, the wavelet frame can be seen as a
redundant base for the space L2(R) which can be defined as follows. Here the tight wavelet
frame is considered.
The space L2(R) is the set of all the functions f(x) which satisfies the following condi-

tion.

||f ||L2(R) := (

∫
R

|f(x)|2dx)
1
2 <∞ (11)

And similar, l2(Z) is the set of all sequences defined on Z satisfying the following condition.

||h||l2(Z) := (
∑
k∈Z

|h[k]|2dx)
1
2 <∞ (12)
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For any function f ∈ L2(R), the dyadic dilation operator D is defined by the following
formula (13).

Df(x) :=
√
2f(2x) (13)

And for a ∈ R, the translation operator can be defined as below.

Taf(x) := f(x− a) (14)

Then, we haveTaD
j = DjT2ja. For some given Ψ := {ψ1, · · · , ψr} ⊂ L2(R), a wavelet

system can be defined as

X(Ψ) := {ψi,j,k : 1 ≤ l ≤ r; j, k ∈ Z} (15)

here ϕi,j,k = DjTkψl = 2
j
2ψl(2

j − k). The system X(Ψ) ≤ L2(R) is called a tight wavelet
frame of L2(R) if

||f ||2L2(R) =
∑

geX(Ψ)

| < f, g > |2 (16)

holds for all f ∈ L2(R), where < ·, · > is the inner product in L2(R).
Actually, when X(Ψ) forms an orthonormal basis of L2(R), then X(Ψ) is called an

orthonormal wavelet basis. And when X(Ψ) forms a tight frame of L2(R), then the X(Ψ)
is called a tight wavelet frame. Here we have a theorem as follows.

Theorem 2.1. The wavelet system Xf(Ψ) is a tight frame of L2(R) if and only if the
identities∑∑

|ψ̂(2kw)|2 = 1;
∑
ψ∈Ψ

∞∑
k=0

ψ̂(2kw)ψ̂(2k(w + (2j + 1)2π)) = 0 j ∈ Z (17)

And the theory of fames has a long history of the development even before the discov-
ery of the multiresolution analysis of [20] and the systematic construction of compactly
supported orthonormal wavelets of [21].

2.5. Dictionary. In fact, the definition for dictionary is something similar to the base
for a space. Let Φ be a sequence of vectors Φ = {ϕi}Ni=1, N ≥M and the vectors need not
to be linear independence, then any vector X in this space can be expressed as follows.

X = Φα = [ϕ1ϕ2 · · ·ϕN ]


α1

α2
...
αN

 =
N∑
i=1

αiϕi (18)

Here, the coefficients αi =< X, ϕi > is the projection coefficients of the vector X onto
the element ϕi. Normally, the combined matrix Φ is a M ×M square matrix. When the
vectors ϕi are not linear independent and N >> M , then the matrix Φ will be called a
dictionary matrix and the sequence ϕ will be called a dictionary. It enables the sparse
presentation for a signal.

One of the useful research orientation is called the online dictionary learning [22,23]
which can speed up the convergence and improve the convergence result. There have
been many different learning dictionary methods such as the MOD method, the Union of
Orthobases method [24] and the Generalized PCA method [25].
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3. Our Proposed Method. We use a smaller dimensional dictionary to learn and the
reason is the easy decomposition for the smaller dictionary in the whole dictionary learning
process:
Model
(1) Firstly, the original image is divided into blocks. Different tight wavelet frame

transform is applied onto them.
(2) Secondly, to form a sparse model for a

√
n×

√
n image block as below.

min ||αi,j||0 s.t. Xi,j = Φαi,j (19)

Here, αi is the sparse representation for the image block and is the redundant dictionary.
(3) Thirdly, to form a large image sparse model, if all the blocks Xi,j satisfies the

following condition.

αi,j = argmin
αi,j

||Φαi,j −Xi,j||22 + µ||αi,j||0 (20)

And the whole sparse model can be written as follows.

{α̂i,j, X̂} = argmin
αi,j ,X

λ||X − Y ||22 +
∑
i,j

µi,j||αi,j||0 +
∑
i,j

||Φαi,j −Ri,jX||22 (21)

Here, Ri,j is the extracting factor of the image blocks, i, j is the location for the blocks
in the large image and λ is the similar factor.
Solve
(4) Fourthly, to solve the first decomposition model as follows.

α̂i,j = argmin
αi,j ,X

∑
i,j

µi,j||αi,j||0 +
∑
i,j

||Φαi,j −Ri,jX||22 (22)

The OMP method can be used to solve this problem that is to find the sparse represen-
tations of all the blocks which has the smallest distortion with the original image under
the already known Φ. And we can find the sparse coefficients αi,j under some special
conditions for the distortion by stopping iterative computations.
(5) Fifthly, we will solve the following model.

X̂ = argmin
αi,j ,X

λ||X − Y ||22 +
∑
i,j

||Φαi,j −Ri,jX||22 (23)

And the solution for the above has already known for us as follows.

X̂ = (λI +
∑
i,j

RT
i,jRi,j)

−1(λY +
∑
i,j

RT
i,jΦα̂i,j) (24)

As we can see from the above analysis, all the solution methods are under the already
known dictionary Φ. And here, we need to find the sparse dictionary through learning.
So the problem (19) can be converted into the following one.

{Φ̂, α̂i,jX̂} = argmin
αi,j ,X

λ||X − Y ||22 +
∑
i,j

µi,j||αi,j||0 +
∑
i,j

||Φαi,j −Ri,jX||22 (25)

(6) Sixthly, divide the dictionary learning step and the sparse representation step by
using the K-SVD method: (a) To find the image block sparse coefficients αi,j under the
well known redundant dictionary Φ . (b) To update every column of the dictionary and
the sparse coefficients αi,j by the representation of each image block.
(7) To initialize the parameters: let X = Y , Φ is the redundant tight wavelet frame

dictionary. And the iterations number is J .
(8) To go through the following steps for J times:
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• To get the solution for the following problem by applying the OMP method onto the
image block Ri,jX. The solution is an approximate one and C, σ are constants.

∀i, j min
αi,j

||αi,j||0 s.t. ||Ri,jX − Φαi,j||22 ≤ (Cσ)2 (26)

• Update the dictionary
– Find all the image blocks Ri,jX which satisfy the condition wl = {(i, j)|αi,j(l) ̸=
0}.

– Calculate the residual value for each coordinate (i, j) ∈ wl:

eli,j = Ri,jX −
∑
m̸=l

dmαi,j(m) (27)

– Let El be a residual matrix and the column vector is {eli,j}(i,j)∈wl

– Apply the Singular Value Decomposition (SVD) method onto El, then we can

get El = U∆V T . Let the first column of matrix U be the updated d̃l and at
the same time multiply ∆(1, 1) by the first column of V the result is used as the
updated sparse coefficients.

• The final image can be shown below.

X̂ = (λI +
∑
i,j

RT
i,jRi,j)

−1(λY +
∑
i,j

RT
i,jΦα̂i,j) (28)

One can solve the above problem by using the eigenvalue method.

4. Experimental Results. The 64 × 64 Lena image is used in our experiments here.
The traditional DCT based CS method and ours are compared with each other in the
following figure 1. All the results are gotten under the same reconstruction parameters.

Table 1. Comparison between the DCT based and wavelet frame based
CS reconstruction results

L DCT based CS Wavelet basedf CS Wavelet frame based CS
2000 20.33dB 20.99dB 22.98dB
2400 23.21dB 24.17dB 25.44dB
2800 25.99dB 26.60dB 27.35dB
3200 28.74dB 29.01dB 29.56dB
3600 31.27dB 32.38dB 33.89dB

Figure 2. Reconstruction image comparison results: (a) original image,
(b) DCT based CS reconstruction image, (c) wavelet frame based CS re-
construction image



240 X. Sun, W. Song, Y. Lv, and L. Tang

As we can see from the above comparison results, our proposed method performs much
better than the DCT based one. In fact, the method is also better than the traditional
wavelet based one and the following table 1 gives the detailed data for the comparison
and the parameter is the length of the observation sequence.
The PSNR values shown above gives a clear idea of the performance: our proposed

method is much better than the traditional DCT and wavelet based CS methods.

5. Conclusions. A novel method for Compressed Sensing based on the wavelet frame
and dictionary has been proposed in this paper. The algorithm design process and some
experimental results have been shown. Good performance has shown the efficiency of our
method. To decrease the computational complexity is our future work.
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