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Abstract. Super-resolution (SR) image reconstruction is a technique to generate a high
resolution (HR) image from several low resolution (LR) images of the same scene, which
can improve the visual effect of images or serve as a pre-processing technique. Among
various SR image reconstruction schemes, sparse representation based SR image recon-
struction schemes have become the current research focus because of their excellent recon-
struction quality. In this paper, an SR image reconstruction algorithm based on sparse
representation with a redundant dictionary is proposed. In our algorithm, the redundant
dictionary and the coding dictionary are trained jointly, and the representation coeffi-
cients can be calculated by simply multiplying the input signal by the coding dictionary,
which can reduce the computational complexity greatly. The proposed algorithm makes full
use of some constraint terms such as the consistence of sparse representation coefficients
between the HR image and corresponding LR images, a sparsity prior, autoregressive
models and nonlocal means regularization to build up the cost function for SR image
reconstruction, and then solves this function based on the iterative shrinkage method to
obtain the target HR image. Experimental results demonstrate that the proposed method
can achieve great improvement in terms of visual effect, PSNR and SSIM.
Keywords: Super-resolution image reconstruction, Sparse representation, Iterative shrink-
age, Nonlocal means, Redundant dictionary.

1. Introduction. Super resolution (SR) image reconstruction is a technique to restore
a high resolution (HR) image from a single or multiple low resolution (LR) images, which
can be used to display LR images obtained from various LR imaging devices (such as

690



Super-resolution Image Reconstruction Using Dual Dictionaries 691

mobile telephones and surveillance devices ) on HR devices (e.g., HDTV). SR image
reconstruction techniques have been widely applied in various fields including medical
imaging, satellite remote sensing, military reconnaissance, and city security systems. With
many years development, SR image reconstruction techniques can be classified into two
main categories according to different types of input information, i.e., conventional multi-
frame based methods [1-3], and single-frame based algorithms [4-7].

Conventional multi-frame based SR image reconstruction algorithms make full use of
multiple LR images captured from the same scene to generate a SR image. Three typical
traditional methods that have been widely researched are maximum a posteriori (MAP)
[8], projection onto a convex set (POCS) [9] and iterative back projection (IBP) [10].
They are based on the same model, and they are designed to obtain the HR images by
imposing different additional constraints on ill-posed problems. In order to take advantage
of the information from multiple input LR images, it is necessary to perform sub-pixel
motion vector estimation on the sequence of input images. The main idea of this kind
of schemes is to generate the model based on the LR images and then solve this model
conversely to obtain the SR image. However, too many parameters such as motion vectors
and the settings of fuzzy matrices for these conventional schemes are required to be esti-
mated, while the input information is insufficient, the reconstruction results are therefore
unsatisfactory.

Single-frame based schemes perform SR image reconstruction only based on one input
LR image. In general, single-frame based schemes can be classified into two categories.
The first category embodies interpolation-based algorithms that are relatively simple and
real-time, and they often serve as the preprocessing step for other SR image reconstruc-
tion schemes. Two typical ones are bilinear interpolation and bicubic interpolation [4].
They do not consider the intrinsic structure such as edges in images, resulting in image
blurring or false edges. Sun et al. proposed [11] to perform the interpolation-based im-
age reconstruction first, and then adjust the edges of the reconstructed image according
to a priori HR edge information obtained from a large number of natural HR images.
However, this method is apt to cause distortions after reconstruction. The second cat-
egory embodies learning-based schemes, which first learn a prior information based on
the LR images and their corresponding HR images in the database, and then guide the
SR image reconstruction based on the obtained a prior information. Freeman et al. [5]
modeled the spatial relationship between LR patches and HR patches using a Markov
network, and then estimated the missing high-frequency content due to degradation, and
finally added it to the initial interpolation result to obtain the output HR image. Refer-
ence [12] proposed an improved scheme by introducing the so-called Primal Sketch Priors
to the constraints during the reconstruction process. In general, the algorithms in this
category can overcome the limitation in the number of times of resolution improvement
compared with other SR image reconstruction schemes, however, since they need many
paired low-resolution and high-resolution image blocks, their computational complexity
is very high.

With the development of the techniques for solving the problem of l1 norm, there
emerges a new branch of learning-based schemes, namely, the single-frame SR image re-
construction based on sparse representation. Natural images are sparse in some domains,
namely, they can be linearly represented by several sparse bases, and the representation
coefficients are sparse too (i.e., most of the coefficients are equal to zero or very close
to zero). Since the sparse representation is universal for images, it has been successfully
applied to many fields such as image encoding, image restoration and image denoising
[13-16]. References [7] and [16] presented a SR image reconstruction scheme based on
sparse representation. This scheme first obtains a pair of redundant dictionaries trained
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from an image database, assuming that the sparse coefficients of the LR image patches
decomposed using the LR redundant dictionary are the same as those of the correspond-
ing HR image patches decomposed using the HR redundant dictionary. During the image
reconstruction process, the LR image patches are first represented using the LR redun-
dant dictionary to obtain the sparse coefficients, then the initially estimated SR image
is obtained by combining the SR redundant dictionary, and finally the global constraints
are considered to obtain the optimized results. This scheme can achieve a very good
effect in normal cases, however it cannot achieve good effect in the case that the input
image is much blurred or the number of times enlarged is big. Reference [17] utilized
the PCA (Principal Component Analysis) technique to train multiple sub-dictionaries,
and ARM (Autoregressive Models) and NL-M (NonLocal Means) constraints are added
in the reconstruction equation to constrain the target HR image. To solve the recon-
struction equation, the IS (Iterative Shrinkage) based method is used, and thus a good
reconstruction effect can be obtained.
For sparse representation based image reconstruction schemes, one of main steps is to

construct and train the redundant dictionaries. Reference [14] adopted the K-SVD algo-
rithm to train the redundant dictionaries, however the computational complexity is very
high and the training performance is not so good in the case that there is large similarity
between samples. Reference [17] utilized the PCA method to train multiple orthogonal
sub-dictionaries, and then represented the input image based on sparse representation.
However, the PCA orthogonal dictionaries are only effective for the Euclidean structure
but ineffective for nonlinear structures. Fortunately, since the l1 norm is adopted, the
redundant dictionaries can be used to overcome this shortcoming to some degree. Ref-
erence [18] proposed a very efficient solution to redundant dictionaries, and the obtained
dictionaries can be used to achieve a very good sparse decomposition, however, the compu-
tational complexity is very high. Reference [19] obtained the so-called encoding dictionary
at the same time of learning the redundant dictionaries. Since the sparse coefficients can
be obtained by multiplying the encoding dictionary by the input signal, the computa-
tional complexity can be greatly reduced, however, the accuracy of sparse coefficients is
not high. Because of above situation, this paper presents to solve the sparse coefficients
from the point of view of super completed redundant dictionaries. The redundant dictio-
naries are first learned using the dual dictionary method in [19], and then the iteration
is divided into two parts, the first part is to solve the sparse coefficients based on the
encoding dictionary, while the second part is to solve the sparse coefficients based on the
feature sign search algorithm in [18]. The remainder of this paper is organized as follows.
Section 2 introduces a priori constraints of the SR image reconstruction problem based
on sparse representation. Section 3 presents our dictionary training scheme. Section 4
proposes our iterative shrinkage based sparse representation algorithm. Finally, various
experimental results in Section 5 demonstrate the efficiency of our algorithm.

2. A Priori Constraints. Super resolution image reconstruction is actually a process to
select the constraint components according to the input image and compose an equation
and then solve it, where the component selection concerns the reconstruction effect. With
the development of digital image processing technology, people have proposed many a prior
constraints. In order to achieve a satisfactory reconstruction effect, this paper performs
a prior constraints based on the following idea:
(1) The LR image formation model: for single-frame SR image reconstruction, the LR

image Y is obtained by blurring an ideal SR image X with a point spread function H
and down sampling it and imposing noise on it, the corresponding mathematical formula
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can be expressed as follows:

Y = DHX + v (1)

where D is the down-sampling matrix and v denotes the noise. In fact, SR image re-
construction is the process of solving the inverse problem based on the input LR image
Y to get the SR image X . Because the number of unknown quantities is more than the
number of known quantities, this problem is an ill-posed problem, which requires some
other a priori information.

(2) Sparse a prior: natural images are generally compressible, that is, they can be sparse
coded [20] in a certain domain. With the development of l1 norm problem solving tech-
niques, sparse representation is more and more widely applied in digital image processing
for reverse problem solving [21]. For the input x ∈ Rn, based on the given redundant
dictionary Φ = [φ1,φ2, · · ·,φm] ∈ Rn×m, assume the sparse coded coefficient vector is

α = [α1, α2, · · ·, αm]
T (most of the coefficients are close to 0), we have:

x ≈ Φα (2)

Because the l0 norm problem is not a convex problem but a NP problem, we adopt the l1
norm to solve the sparse coefficients as follows:

α = argmin
α

{
∥x − Φα∥22 + λ |α|1

}
(3)

where λ is a constant. To solve this problem, this paper adopts the feature sign search
algorithm [18].

3. Redundant Dictionary Training. The sparse dictionary Φ and ARM weighting
parameters, especially the sparse dictionary, play a key role in SR image reconstruction.
This paper adopts the dual dictionary learning algorithm for redundant dictionary train-
ing. After the training process, we can obtain two dictionaries, one is the redundant
dictionary and the other is the encoding dictionary. The redundant dictionary training
process includes two main steps, one is to establish the training samples and the other is
to solve the dictionary:

(1) Establishment of training samples
In order to train the redundant dictionary Φ = [φ1,φ2, · · ·,φm] ∈ Rn×m, samples of

size
√
n ×

√
n are required to be cropped from SR images in the database. Each SR

image in the database is divided into blocks of size
√
n×

√
n, then all the obtained image

blocks are arranged into a column vector, denoted by s i (s i ∈ Rn). Through computing
the variance of s i (denoted by Var(s i)), remaining the column vectors whose Var(s i) is
greater than a certain threshold, and removing the column vectors that are relatively
smooth, we can finally obtain a set of training samples S = {s1, s2, · · ·, sM}, where M
denotes the size of the set of samples.

(2) Training of dual dictionaries
The dual dictionary training method can obtain the linear mapping of the redundant

dictionary, i.e., the coding dictionary, at the same time of training the redundant dic-
tionary. In general, repeated iterations are required for solving the sparse coefficients of
a signal, and thus the computational complexity is relatively high. In fact, the sparse
coefficients can be obtained through directly multiplying the coding dictionary by the
input signal, which can greatly reduce the computational complexity, however, the ob-
tained sparse coefficients are not accurate and the error is large. Compromising above
two methods, this paper proposes a new solution, i.e., the iterative shrinkage process is
divided into two parts, in the first part the sparse coefficients are obtained by multiplying
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the coding dictionary, in the second part the feature sign search algorithm is adopted to
solve the sparse coefficients, which greatly improves the reconstruction effect.
The equation for solving the redundant dictionary can be described as:

{Φ,Θ} = argmin
D,Θ

{
∥S − ΦΘ∥22 + λ |Θ |1

}
(4)

where Θ = [α1,α2, · · ·,αM ] ∈ Rm×M denotes the set of sparse coefficients for all samples
in the sample set S = [s1, s2, · · ·, sM ]. The equation for dual dictionary training can be
described as:

{Φ,Ψ ,Θ} = min
Φ,Ψ ,Θ

{
∥S − ΦΘ∥22 + η∥Θ − ΨS∥2

2 + λ |Θ |1
}

s.t. ∥φi∥22 ≤ 1, ∥ψi∥22 ≤ 1
(5)

where Ψ = [ψ1,ψ2, · · ·,ψM ] ∈ Rm×n is the coding dictionary,ψi is the i -th column of Ψ ,
and η is a constant. This equation can be solved by using the iterative method as follows.
1) First, Φ and Ψ are fixed, and Θ is updated by transforming Eq. (5) as follows:

Θ = argmin
Θ

{
∥S − ΦΘ∥22 + η∥Θ − ΨS∥2

2 + λ |Θ |1
}

(6)

Then we can have the following iterative expression for Θ :

Θk+1 = Tλ/2σΘ

[(
1− η

σΘ

)
Θk +

1

σΘ

(
ΦT

(
S − ΦΘk

)
+ ηΨS

)]
(7)

Where σΘ = 2
∥∥ΦTΦ+ ηI

∥∥
F
,I is the unit matrix. If Tτ [] is defined as the thresholding

operation, and X i ,j denotes the element of the matrix X at the location (i, j), we have:

(Tτ [X ])i,j = sign (X i,j)max {|X i,j| − τ, 0} (8)

2) Second, Θ and Ψ are fixed,and Φ can be solved by transforming Eq. (5) as follows:

Φ = argmin
Φ

∥S − ΦΘ∥22 s.t. ∥φi∥22 ≤ 1 (9)

If we define the operation π (d) = d/max {1, ∥d∥} which is used to project a vector to
its unit length, then the updating expression of Φ can be described as follows:

Φk+1 = πΦ

(
Φk +

1

σΦ

(
S−ΦkΘ

)
ΘT

)
(10)

where πΦ denotes the operation of projecting Φ to its unit length by the operator π (),
and σΦ = 2

∥∥ΘΘT
∥∥
F
.

3) Finally, Φ and Θ are fixed, and Ψ can be solved by transforming Eq. (5) as follows:

Ψ = argmin
Ψ

η∥Θ − ΨS∥2
2 s.t. ∥ψi∥22 ≤ 1 (11)

Similar to Φ, the updating expression of Ψ can be described as follows:

Ψk+1 = πΨ

(
Ψk +

1

σΨ

(
Θ−ΨkS

)
ST

)
(12)

where πΨ denotes the operation of projecting Ψ to its unit length by the operator π (),
and σΨ = 2

∥∥SST
∥∥
F
.



Super-resolution Image Reconstruction Using Dual Dictionaries 695

4. Iterative Shrinkage Based Sparse Representation Algorithm. After training
the redundant dictionaries, we can perform the sparse representation based on the re-
dundant dictionaries. For each image block, we adaptively select the ARM weighting
parameters to constrain its center pixel, and perform the non-local mean constraints on
it, then utilize the iterative shrinkage method to solve the equation, obtaining the final
SR image output.

Let x i ∈ Rn denote the image block of size
√
n×

√
n obtained from the SR image X ,

we can define x i = RiX , i = 1, 2, · · ·, N , where Ri is the cropping matrix used to obtain
x i from X . According to the sparse prior, x i can be represented by using the redundant
dictionary, namely,x i = Φαi , thus X can be expressed as [17]:

X =

(
N∑
i=1

RT
i Ri

)−1 N∑
i=1

RT
i Φαi (13)

For convenience, we define:

X = Φ · Θ =

(
N∑
i=1

RT
i Ri

)−1 N∑
i=1

RT
i Φαi (14)

where Θ = [α1,α2, · · ·,αN ]. According to Eqs. (1), (3) and (14), the final SR recon-
struction equation can be expressed as follows:

Θ = argmin
Θ

{
∥Y − DHΦ · Θ∥22 + λ |Θ |1

}
(15)

After obtaining Θ , we can get the SR image X according to Eq. (14).

4.1. Adaptive Selection of ARMWeights. The main idea of the autoregressive model
is to make use of the pixels around the current pixel to constrain the current pixel value
and to minimize the error between the current pixel value and the weighted sum of the
neighboring pixels. The training of weighting parameters for the autoregressive model is
a process to get the weighting parameters of the surrounding pixels of the current pixel.
This paper uses the method in [17] to train the weighting parameters, obtaining the ARM
weighting parameters {a1,a2, · · ·,aK} and corresponding index vectors {µ1,µ2, · · ·,µK}.

Since different images have different variances of image blocks as well as different ARM
weights, for each input image vector x i , we need to find the most suitable ARM parameter
vector to constrain the center pixel of the input image vector x i . Similar to the training
process of the ARM weighting parameters, first of all we need to obtain the high frequency
information vector x h

i of x i . The selection of ARM parameter vectors can be expressed
as follows:

ki = argmin
k

∥∥xh
i − µk

∥∥
2

(16)

Thus the obtained ARM weighting parameters for x i should be aki . Assume xi is the
center pixel of x i , and χi is the vector consisting of the neighboring pixels adjacent to

the center pixel xi , then the optimal current pixel value xi should minimize
∥∥xi − aT

ki
χi

∥∥2
2
.

Adding this constraint to Eq. (15), the reconstruction equation can be rewritten as:

Θ = argmin
Θ

{
∥Y − DHΦ · Θ∥22 + λ |Θ |1 + γ

∑
i

∥∥xi − aT
ki
χi

∥∥2
2

}
(17)
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Where γ is a constant balancing factor. Here, for convenience,
∑

i

∥∥xi − aT
ki
χi

∥∥2
2
, where

I is the unit matrix, and the matrix A satisfies:

A (i, j) =

{
ai if xj belongs to χi, ai ∈ aki

0 otherwise
(18)

At this time, the reconstruction equation can be improved as follows:

Θ = argmin
Θ

{
∥Y − DHΦ · Θ∥22 + λ |Θ |1 + γ ∥(I − A)Φ · Θ∥22

}
(19)

4.2. Non-local Mean Filtering. The principle of non-local mean filtering is very sim-
ple, that is, for each current image block, we can find several similar blocks to constrain
it. For each image block x i , we find all image blocks similar to it in the whole image.
Assume x s

i is one of blocks similar to x i , then esi = ∥x s
i − xi∥22 should be small enough.

If we calculate the weighted sum of all the center pixels in these similar blocks, the re-
sults should satisfy [17] xi ≈

∑L
s=1 b

s
i x

s
i , where bsi denotes the weight allocated to x s

i .
Obviously, the more two blocks are similar, the greater weight should be allocated. Thus,
we can describe the expression for weight calculation as bsi = exp (−esi /h) /ci , where
ci is the normalization factor,h is a constant,x s

i is the center pixel of x s
i , and L is the

number of similar blocks (in this paper, we set L = 7). Assume b i =
[
b1i , b

2
i , · · ·, bLi

]
is the weighting vector,βi =

[
x 1
i , x

2
i , · · ·, xL

i

]
is the set of center pixels, we should mini-

mize
∑

i

∥∥xi − bT
i βi

∥∥2
2
for the whole image. Similarly, we use ∥(I − B)X ∥22 to describe∑

i

∥∥xi − bT
i βi

∥∥2
2
, where B should satisfy:

B (i, s) =

{
bsi if xs

i belongs to βi, b
s
i ∈ bi

0 otherwise
(20)

Thus, the reconstruction equation can be rewritten as:

Θ = argmin
Θ

{
∥Y − DHΦ · Θ∥22 + λ |Θ |1 + γ ∥(I − A)Φ · Θ∥22 + η ∥(I − B)Φ · Θ∥22

}
(21)

The above equation can be solved by using the iterative shrinkage algorithm, which can
be illustrated as follows:
Step 1: Initialization.
Step 1.1: Use the bi-cubic interpolation scheme to expand the LR images to the required

sizes, as the initial input X (0).
Step 1.2: For each block in the obtained SR image, select proper ARM weighting

parameters, and calculate the similar block, obtaining the set of weights b i .
Step 1.3: Initialize matrices A and B according to the calculation results in Step 1.2.
Step 1.4: Preset the parameters γ, η,P , e Mid Iter and the maximum number of itera-

tions Max Iter, and set k = 0.

Step 2: Iterative Process: if k is not greater than Max Iter and
∥∥∥X (k+1 ) −X (k)

∥∥∥2
2
/∥∥∥X (k)

∥∥∥2
2
> e, perform the following sub-steps; Otherwise, stop the iteration process, go

to Step 3.
Step 2.1: Calculate
X (k+1/2) = X (k) + (DH )T Y − (DH )T DHX (k) − γ (I − A)T (I − A)X (k)

− η (I − B)T (I − B)X (k)

Step 2.2: If k is less than Mid Iter, then
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Θ (k+1/2) =
[
ΨR1X

(k+1/2),ΨR2X
(k+1/2) · · ·ΨRNX

(k+1/2)
]
. Otherwise, use the fea-

ture sign search algorithm to solve Eq. (5), obtaining the set of sparse coefficientsΘ (k+1/2).

Step 2.3: Calculate Θ (k+1) = Tτ

[
Θ (k+1/2)

]
.

Step 2.4: Calculate X (k+1) = Φ · Θ (k+1)

Step 2.5: If mod (k ,P) = 0, recalculate the ARM parameters for each block, and
compute the similar block, update A and B .

Step 2.6: Set k = k + 1.
Step 3: Output the SR reconstruction results X .
In our algorithm, Max Iter is used to control the number of iterations (we adopt

Max Iter =150), e is used to control the convergence degree, and P is a constant used
to control the updating speed of A and B . The parameter τ in Step 2.3 is selected ac-
cording to the method in Reference [17], and the calculation of τi ,j is based on the sparse
coefficients of the similar block.

5. Experimental Results. In this paper, we evaluate the proposed method based on
different types of LR images. For color images, we perform the our reconstruction scheme
on the luminance component, while perform the bi-cubic interpolation scheme on color
components Cb and Cr. In the dictionary training process, we take the 7 × 7 small
blocks for training, and 200 classes are used for the ARM parameter model training. To
obtain high frequency images, we first perform low pass filtering (the variance is 1.6) on
SR images, and then subtract the Guassian filtered images from the original images. In
Eq. (21), the balance factors η and γ are set to 0.04 and 0.008 respectively. In order to
eliminate the blocking effect, the image blocks are divided in an overlapped manner by
4 pixels. In order to verify the effectiveness of the proposed algorithm, we compare our
algorithm with the bi-cubic interpolation scheme, the ASDS reconstruction algorithm in
[17] and the sparse representation based method in [16].

Fig. 1 compares four methods in terms of reconstruction visual effect. The first column
shows the input LR images, the second column shows the reconstruction results by the
bi-cubic interpolation scheme, the third column shows the reconstruction results by the
method in [16], the fourth column shows the reconstruction results by the method in [17],
and the fifth column shows the reconstruction results by our proposed method. From
these results, we can see that the bi-cubic interpolation scheme obtains the most blurred
results, and the algorithm in [16] cannot sufficiently reconstruct the edge information and
thus the image visual effect is worse than the algorithm in [17]. For the “Butterfly” image,
the algorithm in [17] has some distortion, while our algorithm can reconstruct the images
with the best quality.

To objectively evaluate the four SR reconstruction methods, Table 1 shows their PSNR
(Peak Signal to Noise Ratio) and SSIM (Structure SIMilarity index) results for 9 test
images. From Table 1, we can see that the Bicubic algorithm achieves the lowest PSNR
and SSIM values. Compared with the Bicubic algorithm, the PSNR and SSIM values of
the algorithm in [16] are greatly improved, and the algorithm in [17] and our algorithm
can obtain the highest PSNR and SSIM values. If we do not consider ARM and NL-
M, our algorithm is generally better than the algorithm in [17] for most images. If we
consider NL-M and ARM, our algorithm is slightly better than the algorithm in [17] for
most images.

6. Conclusions. Based on the deep study of sparse representation and various image a
prior information, this paper puts forward a SR image reconstruction algorithm which
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Figure 1. Comparisons of visual effect among various reconstruction al-
gorithms with the reconstruction factor 3. (a) LR images; (b)Results by
the Bicubic scheme; (c) Results by the method in [16]; (d) Results by the
method in [17]; (e) Results by the proposed scheme.

uses the redundant dictionaries for sparse representation and adopt the iterative shrink-
age approach to solve the reconstruction equation. First, the redundant dictionary and
encoding dictionary are trained based on the image database. During the reconstruction
process for LR images, we use the redundant dictionary to perform sparse representa-
tion on image blocks, where the sparse coefficients are respectively solved by using the
coding dictionary method and the feature sign search method, and the reconstruction
equation is finally solved by using the iterative shrinkage approach, obtaining the final
target SR image. Simulation results show that, we can achieve better effects based on
the redundant dictionary based sparse representation method. To further improve the
reconstruction results, we add the autoregressive model and the non-local mean filter as
additional constraints to the reconstruction equation, which can also obtain better results
than the PCA sub dictionary based method.
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