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Abstract. This paper deals with adaptive blind source separation of noncircular sig-
nals from a complex-valued mixing signal. By making separated signals have the same
second order statistics as the noncircular original signals, some adaptive complex-valued
blind source separation methods are proposed. They achieve some advantages over the
batch method based on second order statistics, but their convergence speed is slower. By
incorporating the restriction that the separating matrix of white mixing signals should be
a unitary matrix in the gradient cost function, an adaptive complex-valued blind source
separation method with fast convergence speed is proposed. In the proposed methods,
the separating matrix of whitened signals approximates a unitary matrix through the op-
timization process, without additional operations that force the matrix to be a unitary
matrix. Validity of the proposed methods is demonstrated by simulations with Gaussian
noncircular signals and communication signals. Simulation results prove the proposed
methods have faster convergence speed and more stable performance for different mixing
signals than other methods based on second order statistics.
Keywords: Blind source separation; Noncircular signal; Unitary matrix; Complex
valued-mixing signal.

1. Introduction. Blind source separation (BSS) is a signal processing method that can
separate original signals from observed signals received by a sensor array without prior
information about the system. Complex-valued blind source separation is used to sep-
arate an original signal from a complex-valued mixing signal. It has been widely used
in biomedical signal processing, power system analysis, communication signal processing,
and natural image processing [1-5]. Research on complex-valued BSS can be divided into
three categories. The first category is methods based on a nonlinear function [6-12], which
use a nonlinear function to approximate entropy, higher order statistics, or probability
density. The second is methods based on kurtosis, higher order cumulant or moment
[1,13-18], which directly use kurtosis or cumulant as the cost function to measure the
non-Gaussian character of separated signals. The last is methods based on second or-
der statistics, which use the characteristics of noncircular signals to realize blind source
separation [19-25]. Each category has its own merits and demerits. The method based
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on second order statistics is only suitable for noncircular signals, but has a simple struc-
ture, lower computation complexity, and is appropriate for complex Gaussian noncircular
signals.

The strong-uncorrelating transform (SUT) [19] method is an earlier complex-valued
BSS method based on second order statistics. It utilizes Takagis factorization to deal
with a whitened signal to separate original signals and whenever applicable, remains
perhaps the simplest and most accessible approach [26]. However, it is a batch method
that is not suitable for real time processing. To overcome this problem, adaptive complex-
valued BSS methods based on second order statistics are proposed. Scott proposed an
equivariant adaptive method [21] which directly gives the update formula of the separating
matrix and proves its convergence. Yang used an adaptive method to realize the SUT
method [23]. Cong simultaneously used covariance and pseudo-covariance to propose
an adaptive complex-valued BSS method [24]. Hao, also inspired by the SUT method,
proposed a batch method based on the pseudo-uncorrelating transform (PUT)[25], which
supposes that the covariance of the original signal is diagonal and its pseudo-covariance
is a unit matrix. In recent years, the performance and separability of SUT have also
been researched [26-27]. Adaptive complex-valued BSS methods based on second order
statistics are designed to separate signals in real time; convergence speed directly affects
real time. In this paper, to accelerate convergence rate, three adaptive complex-valued
BSS methods based on second order statistics are proposed with fast convergence rates.

2. Model and Property.

2.1. Complex-valued BSS model. Generally, a noise-free linear complex-valued BSS
model can be expressed as

x = As (1)

where x = [x1, x2, · · · , xm]T is the complex-valued mixed signal of n statistically indepen-
dent zero mean signals s = [s1, s2, · · · , sn]T . A is a nonsingular complex-valued mixing
matrix with size m × n . In this paper, we suppose that the number of mixed signals
equals the number of original signals. The aim of BSS is to estimate both the mixing
matrix A and original signals s from observed signals without using information about the
system. In non-underdetermined BSS, it is realized by searching the optimal separating
matrix W

y = Wx (2)

where W= [w1,w2, · · · ,wn]T and y = [y1, y2, · · · , yn]T is the estimated signal of the original
signal s . If WA=I , then y = s. Since complex-valued BSS does not utilize information
about the mixing system, it has some indeterminacy in amplitude, sequence, and phase.
This indeterminacy does not affect the shape of the estimated source signal waveform,
which contains most information about the source signals.

2.2. Second order statistics property of complex-valued vector. Define a complex-
valued random vector s = sR + jsI , where sR and sI are the real and imaginary parts,
respectively, and j =

√
−1 is the imaginary unit. The expectation E[.] of random vector

s is defined as

E[s] = E[sR] + jE[sI ] (3)

and its covariance is defined as

cov(s) = E[(s− E(s))(s− E(s))H ] (4)
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where ()H denotes Hermitian transpose. Its pseudo-covariance is defined as

pcov(s) = E[(s− E(s))(s− E(s))T ] (5)

where ()T denotes transpose. The covariance, together with pseudo-covariance, is the
full expression of second order statistics for random vector s . If the pseudo-covariance
equals zero, the random vector is called circular or proper. If both the covariance and
pseudo-covariance of the random vector are nonzero, the random vector is called noncir-
cular or improper. The complex-valued noncircular signal is frequently used in digital
communications, such as with BSPK, UQPSK, MASK, and ASK signals.

3. Related Work. The adaptive BSS methods based on the second order statistics of
complex-valued signals all use the second order statistic properties of noncircular to sep-
arate the original signal. They can be described as follows.

Suppose the original signal is s= [s1,s2, · · · ,sn]T and that si is a noncircular signal with
unit covariance and zero mean. The complex-valued mixing signal x is

x = As (6)

and the estimated signal y = [y1, y2, · · · , yn]T of the original signal is

y = Wx (7)

If we successfully estimate the original signal, then the characteristics of the estimated
signal must be the same as the original signal. So, the pseudo-covariance matrix of the
estimated signal y is a nonzero diagonal matrix and its covariance matrix is a unit matrix.
They can be expressed as {

E[yyH ] = E[wxxHwH ] = I
E[yyT ] = E[wxxTwT ] = Λ

(8)

Adaptive complex-valued BSS methods based on second order statistics use the above
characteristic to construct a cost function or to directly propose an update formula.

Scott directly proposes the separating matrix update formula[21]

w(k + 1) = w(k) + µ(I − w(k)Rw(k)H − tri[w(k)Pw(k)T ])w(k) (9)

where k is the number of iterations, µ is the learning rate, R=E[xxH ] , and P=E[xxT ].
Cong uses the above characteristic to construct a cost function [24]

Φ=1
4
tr[(w(k)Rw(k)H−ΛH)(w(k)Rw(k)H−ΛH)H ]+

1
4
tr[(w(k)Pw(k)T−ΛT )(w(k)Pw(k)T−ΛT )H ]

(10)

and deduces the update formula

w(k + 1) = w(k)− µ(w(k)Rw(k)H − ΛH)w(k)R− µ(w(k)∗PHw(k)H − ΛH
T )w(k)P (11)

Yang also uses second order statistics of noncircular signals to construct a cost function.
The method proposed by Yang contains two parts [23]. The first part is adaptive whitening
with the cost function

J1(B) =
1

2
||I −BRBH ||2F (12)

The update formula of the whitened matrix B is

Bk+1 = Bk + µ(I −BkRB
H
k )Bk (13)

The second part makes the pseudo-covariance of the whitened signal diagonal. The second
part’s cost function is

J2(w) =
1

2
||Λ− wE[zzT ]wT ||2F (14)
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where z=Bx is the whitened signal. Its update formula is

wk+1 = wk + µ(Λ− wkBPB
TwT

k )(wkBPB
TwT

k )∗wk (15)

wk+1 = wk+1(w
H
k+1
wk+1)

−1/2 (16)

Equation (16) is used to force the separating matrix to be a unitary matrix so that the
covariance of the separating matrix signal will be a unit matrix.

From (9) and (11), we see that the methods converge to equilibrium only if the co-
variance and pseudo-covariance matrix are simultaneously diagonal. If only one matrix is
diagonal, they converge to equilibrium until the other is diagonal. This has a drawback:
if one covariance matrix becomes diagonal, we cant guarantee the matrix will still be
diagonal in the following iteration that makes the other covariance matrix diagonal; this
negatively affects convergence rate. Yang uses a serial update method to realize both co-
variance matrices as diagonal, which avoids the drawback of the Scott and Cong methods.
However, equation (16) changes gradient direction in iterations, which affects convergence
rate and increases computational complexity. To overcome this problem, based on the
research of Yang, this paper proposes an adaptive BSS method with a fast convergence
rate.

4. Proposed method. In order to accelerate the convergence rate of adaptive complex-
valued BSS based on second order statistics, we also use a serial update method to update
the separating matrix. The first step is adaptive whitening and we directly use Yang’s
method. The whitening matrix is rewritten as

Bk+1 = Bk + µ(I −BkRB
H
k )Bk (17)

where k is the number of iterations, B is the whitening matrix, µ is the learning rate, I is
a unit matrix, R=E[xxH ], and x is the mixed signal or observed signal. The second step is
to diagonalize the pseudo-covariance of the whitened signal while keeping the covariance
matrix diagonal. We use (14) as a cost function and its ordinary gradient with respect to
w∗ is

dw = (wPwT − Λ)w∗PH (18)

where w is the separating matrix of the whitened signal, P=BE[xxT ]BT , and Λ is a
diagonal matrix comprised of diagonal elements of wPwT . According to the supposition
of a noncircular signal, the covariance matrix of separated signals should be a unit matrix

E[yyH ] = wE[BRBH ]wH = I (19)

where y = wBx is the estimation of the original signal. After pre-whitening, E[BRBH ]=I
. From (19) we have

wwH − I = 0 (20)

Differentiate (20) to obtain

d(wwH − I) = dwwH + wdwH=0 (21)

where dwwH is a skew symmetric matrix. The steepest direction keeping w unitary is

∆w=dwwHw − wdwHw (22)

The update formula for the separating matrix can be expressed as

wk+1=wk − µ∆wk=wk − µ[dwkw
H
k wk − wk(dwk)Hwk] (23)

If wk is a unitary matrix, wk+1 is approximately a unitary matrix. This can be proven
with supposition wkw

H
k = I (wk is a unitary matrix). The proof procedure is as following:
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wk+1w
H
k+1

= {wk − µ[dwkw
H
k wk − wk(dwk)Hwk]}{wk − µ[dwkw

H
k wk − wk(dwk)Hwk]}H

= wkw
H
k − µ[dwkw

H
k wkw

H
k − wk(dwk)Hwkw

H
k + wkw

H
k wk(dwk)H−

wkw
H
k dwkw

H
k ] + o(µ2)

= wkw
H
k − µ[(dwk)wH

k − wk(dwk)H + wk(dwk)H − (dwk)wH
k ] + o(µ2)

= I + o(µ2)

(24)

In (24), µ is the learning rate, which is a small value, and so the value of µ2 is even
smaller. If we omit o(µ2) , wk+1 is a unitary matrix. Substitution of (18) into (23) gives

wk+1=wk − µ[(wkPw
T
k − Λ)w∗

kP
HwH

k − wkPw
T
k (w∗

kP
HwH

k − ΛH)]wk

=wk − µ[(D − Λ)DH −D(DH − ΛH)]wk

=wk − µ(C − CH)wk

(25)

where C=(D − Λ)DH and D=wkPw
T
k .

If w is a unitary matrix, then wwHwwH is a unit matrix. Consider if w is just approx-
imately a unitary matrix, then an error of o(µ2) exists in (24) between wwH and the unit
matrix. The error has a bigger effect on wwHwwH than wwH :

|wwHwwH − I| > |wwH − I| (26)

This can be proven by the following based on (24)

wk+1w
H
k+1wk+1w

H
k+1= (I + o(µ2))(I + o(µ2))=I + 2o(µ2)+o(µ2)2 (27)

The term o(µ2) and o(µ2)2 are both bigger than zero, so

wk+1w
H
k+1wk+1w

H
k+1 − I=2o(µ2)+o(µ2)2 > o(µ2) (28)

Based on (24) (wk+1w
H
k+1 − I=o(µ2) ) and (28), we can prove (26) that is true. Based

on the above analysis, wwHwwH is more sensitive than wwH to error o(µ2) , so we use
wwHwwH − I to measure the distance between w and be a unitary matrix. Using wwH

instead of w in (20) obtains

wwHwwH − I = 0 (29)

Differentiate (29) to obtain

wdwHwwH + wwHdwwH = 0 (30)

where wdwHwwH is a skew symmetric matrix. The steepest direction keeping w unitary
is

∆w=wwHdwwHw − wdwHwwHw (31)

The update formula for the separating matrix can be expressed as

wk+1=wk − µ∆wk

=wk − µ[wkw
H
k dwkw

H
k wk − wk(dwk)Hwkw

H
k wk]

=wk − µ[wkw
H
k (D − Λ)DH −D(DH − ΛH)wkw

H
k ]wk

=wk − µ[F − FH ]wk

(32)

where F=wkw
H
k (D−Λ)DH and D=wkPw

T
k . The difference between (25) and (32) is that

in (31) the term wkw
H
k is added. If wkw

H
k =I, (32) can be simplified to (25). However,

when wk is just approximately a unitary matrix, (32) is more sensitive than (25) to the
error (wkw

H
k − I ). This helps to modify the update formula of the separating matrix

to make it move toward the optimal direction. The higher the order of wwH , the more
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sensitive is its error with a unitary matrix. If we use wwHwwH instead of w in (21), we
can use the same method to deduce the update formula for the separating matrix. For
simplicity, we directly give its expression

wk+1=wk − µ[wkw
H
k wkw

H
k (D − Λ)DH −D(DH − ΛH)wkw

H
k wkw

H
k ]wk

=wk − µ[G−GH ]wk

(33)

where G=wkw
H
k wkw

H
k (D−Λ)DH and D=wkPw

T
k . Although wwH and wwHwwH increase

the computational complexity of (32) and (33), compared with (25), they have the same
number of dimensions as w . So, the increased computational complexity is just used to
compute wwH or wwHwwH , and it is not very large.

Based on analysis of (24), even if the learning rate is small and a higher order wwH is
used to reduce error in (32) and (33), an error will still exist between wk+1w

H
k+1 and a unit

matrix. To further reduce error, we insert a compensation term into (25), (32), and (33).
The new update formulas for the separating matrix corresponding to (25), (32), and (33)
are

wk+1=wk − µ[(D − Λ)DH −D(DH − ΛH)+wkw
H
k − I]wk (34)

wk+1=wk − µ[wkw
H
k (D − Λ)DH −D(DH − ΛH)wkw

H
k +wkw

H
k − I]wk (35)

wk+1=wk − µ[wkw
H
k wkw

H
k (D − Λ)DH −D(DH − ΛH)wkw

H
k wkw

H
k +wkw

H
k − I]wk (36)

The initial matrix of wk is a unit matrix, so the compensation term wkw
H
k − I equals

zero in the first iteration. In the next iteration, wk is not unitary and the error term
wkw

H
k − I will revise the gradient of wk+1 to make wk+1 approximate a unitary matrix.

When the proposed methods converge to equilibrium, wkw
H
k − I=0, wk+1=wk , and wk+1

is a unitary matrix. Equation (17) with (34), (35), and (36) define proposed methods I,
II, and III, respectively.

5. Experimental results and analysis. In order to test the algorithms, we use a
synthesized signal and a digital communication signal as source signals, respectively. For
simplicity, we directly use signal expectation instead of instantaneous value. Quality of
separation is assessed by using performance index (PI), which is widely used in blind
source separation. PI can be expressed as [28]

PI(H)=
1

n(n− 1)

{
n∑

i=1

(
n∑

j=1

|hij|
maxl |hil|

− 1

)
+

n∑
j=1

(
n∑

i=1

|hij|
maxl |hlj|

− 1

)}
(37)

where hij is the (i, j) element of the global system matrix H = wBA , A is the mixing
matrix, B is the whitening matrix, w is the separating matrix of whitened signal, and
maxl |hil| and maxl |hlj| are the maximum absolute value among elements in the ith row
and jth column vector of H , respectively. When perfect separation is achieved, the
performance index is zero. In practice, the value of the performance index is around
10−2 [28], which gives good performance. The deviation of wk from a unitary matrix is
measured by

f(k)= ||wkw
H
k−I|2F (38)

In the first experiment, every source is generated independently and the real and imag-
inary components of the sources are also generated independently from a Gaussian dis-
tribution with zero mean and unit variance. They can be expressed as

sk = N(0, k) + j ∗N(0, 1) k = 0, 1, 2 (39)
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where N(0, k) is a random Gaussian distribution between 0 and k. The first source is
circular and the other two are noncircular with distinct spectral coefficients. A mixing
matrix is randomly generated from a uniform distribution (0,1). All algorithms are run
with the same learning rate of 0.01 and 100 times. In each run, the sources and mixing
matrix are regenerated.

Figure 1 shows convergence curves of the SUT [19], Yang [23], Scott [21], and proposed
methods I, II, and III. SUT is a batch method, so its convergence curve is a straight line.
Every subgraph contains 100 convergence curves corresponding to 100 different runs.
From Figure 1, we see that every convergence curve of the proposed method is closer
to one another than in the other methods, which means that the proposed method has
more stable performance for different mixed sources than the other methods, especially
proposed method III. Yang has the worst stability, where some curves deviate heavily
from the others.
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Figure 1. Convergence curves with Gaussian signals

Average convergence curves are shown in Figure 2. From Figure 2, we see that the
number of iterations required for convergence is more than 20000, 12000, 4000, 2000, and
1000 for Yang, Scott, and proposed methods I, II, and III, respectively. The method with
the fastest convergence is proposed method III, followed by proposed methods II and I.
The slowest convergence is with the Yang method. At the stable point, we see that the
performance index of Scott is bigger than SUT, and the proposed methods have the same
performance index as SUT. The bigger the performance index, the bigger the error. So,
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the proposed method has the same error as SUT, while a smaller error than Scott. The
deviations of from a unitary matrix for the proposed methods are shown in Figure 3. As
we can see, the separating matrix of the proposed method has very small deviation from
a unitary matrix in the whole iterative process, and can almost be omitted.
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Figure 2. Average convergence curves with Gaussian signals
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Figure 3. Deviation of separating matrix from a unitary matrix

In the second experiment, we suppose that three digital communication signals, two
BPSK and one QAM, impinge on a uniform linear antenna array with three elements
from directions of 100,250, and 300. In Figure 4, the first row is unknown source signals
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that we want to estimate from the mixing signals. Separated signals obtained using the
proposed methods are shown in Figure 5. In Figure 5, the first, second, and third rows
are the separated signals separated from the mixing signal by using proposed methods I,
II, and III, respectively. Comparing the original signals in Figure 4 with the separated
signals in Figure 5, we can easily see that that the fist and second column signals in
every row in Figure 5 is almost the same with the fist and second column signals in
the first row in Figure 4. The third column signal in every row in Figure 5 rotates
some angle relatively the third column signal in the first row in Figure 4 which is an
inherent indetermination for complex-valued blind source separation, but they have the
same waveform. The separated signals have almost the same waveform as the source
signals, so this shows that the proposed method is valid for communication signals.
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Figure 4. Original signals and mixing signals

Average convergence curves for the three methods without noise and with difference
scale of noises are respectively shown in Figure 6 and Figure 7 from an average of 100
different simulation runs with a learning rate of 0.001. From Figure 6, we see that pro-
posed method III starts to converge after 500 iterations, proposed method II after 1000
iterations, and proposed method I after 2000 iterations, while Yang starts to converge
after 10000 iterations. Performance indices of SUT and Scott are both bigger than 0.1,
which means they fail or have bad performance in separating mixing signals according to
experience [28]. In this experiment, they can not separate the mixing signals successfully.
This experiment shows that the proposed method is valid for communication signals and
has a faster convergence speed than the other methods. To test the performance on noise
signals, we add complex circular Gaussian noise with variance 0.05, 0.07 and 0.1. In Fig-
ure 6, the SUT and Scott failed in separating mixing signals, so we did not test the two
methods in the following experiments. The convergence curves are shown in Figure 7. The
first row, second and third row are the convergence curves with additive noise variance
0.05, 0.07 and 0.1 respectively in Figure 7. From the Figure 7, we can see that as the
increasing of additive noise variance, the performance index at stationary point becomes
large that the error is become large. Their performance index at stationary point is still
smaller than 0.1, this shows that the proposed method is still validity for smaller noise
signal.
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Figure 5. Separated signals

The proposed methods have two stages. The convergence curves shown in all figures
are the convergence curves only for the second stage. For the above two experiments, in
the first stage, after about 100 iterations, the whitening signal converges to unit matrix.
Compared with other methods, the total iteration of proposed methods is still far less
than other methods.
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Figure 6. Average convergence curves with digital communication signals
without noise
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6. Conclusions. This paper proposed a kind of adaptive complex-valued ICA method
for noncircular signals based on covariance and pseudo-covariance matrices of noncircular
original signals. The proposed methods have faster convergence speed and smaller error
than other adaptive methods based on second order statistics. For different mixing source
signals, the proposed methods still have better performance and faster convergence than
the Scott method which is equivariant to the mixing system. For the digital communi-
cation signals used in this paper, the proposed methods are validity and still have faster
convergence rate, while the SUT and Scott methods fail to recover the original signal.
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