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Abstract. This paper presents an improvement of the flower pollination algorithm
(FPA) for optimization localization issues in wireless sensor networks (WSN). A novel
probabilistic is used to generate a new candidate of competition for simulation optimiza-
tion operations. The actual population of tentative solutions does not employ, but a
unique representative probabilistic of them accumulate over generations. Evaluating this
proposed method, we firstly used six selected benchmark functions to experiment and
then we applied the proposal to solve the optimization problem of localization in WSN to
confirm its performance further. The testing results compared with the original version
of FPA show that the proposed method produces considerable improvements of reducing
variable storing memory and running time consumption. Compared with the other ap-
proaches in the literature, the localization obtained from the proposed method is more
accuracy and convergence rate indicate that the proposed method provides the effective
way of using a limited memory.
Keywords: Compact Flower Pollination Algorithm, Optimization localization prob-
lems, Probabilistic model, Wireless sensor network.

1. Introduction. Knowledge of the sensor node location is criteria key for some ap-
plications of the wireless sensor network (WSN), especially in applications include envi-
ronmental monitoring, precision agriculture, vehicle tracking, and logistics [1]. In these
applications, information about current locations is used for geographic-based routing,
getting data aggregation, and various network services. Hence, self-organization and lo-
calization capabilities are one of the most important requirements in sensor networks.
Theoretically, location awareness is possible obtained in principle by using a global posi-
tioning system (GPS). This solution, however, is not always viable in practice, because
a sensor network consists of thousands of nodes and GPS will be very costly. In another
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hand, GPS is not well suited to indoor and underground deployments, and the presence of
obstacles like dense foliage or high buildings. Such barriers may cause GPS impair com-
munication with satellites [2]. The estimate the location of sensor nodes by optimization
localization error is one of the promise ways to deal with these mentioned issues.

Moreover, several applications require a solution to a complex optimization problem
whether in limited hardware conditions [3], [4]. An available computational device is in
use of the limited hardware state due to cost, memory and space limitations, e.g. WSN
[5], [6]. Sensor nodes in WSN are small size, battery-powered, memory-constraint devices.
The wireless communication capability of these devices is also over a restricted area [7].
Because the limited memory and the power constraints, WSNs fully functional network
must be maintained and stable by the sound design system employment [6],[8]. The
problems arise from the insufficient memory of these computational devices for storing
the population of candidate solution in the optimization problems.

The compact algorithm is a promising answer to these problems. Compact algorithm
simulates the behavior of population-based algorithms by employing the replacement a
population of solutions with its probabilistic representation. An efficient way is to use
one adaptive solution to present all solutions in the search space for the advantages of
population-based algorithms without requirements of storing actual populations of solu-
tions [9]. The representation of candidate solutions is considered based on learning and
sampling probabilistic models. It means a built probabilistic model could generate new
candidates or selected solutions by sampling. The replacement strategy is used to incor-
porate new solutions into the virtual population. In the compact algorithms, the number
of parameters stored in the memory is smaller than their corresponding algorithms of the
population-based structures and the requirement of the memory device is less for every
run.

Additionally, Flower Pollination Algorithm (FPA) [10] is a new population-based intelli-
gent optimization algorithm. FPA is a useful optimization algorithm because of balancing
between exploring and exploiting like adjusting parameters for these pollination processes.
Two different ways of pollination as the self-pollination and cross-pollination considered
are local pollination and the global pollination process for simulating FPA.

Above mentioned motivation for this paper. In this article, we employ a probabilistic of
a representative population within a few variable memories, rather store the population
such the original version. This way is called compact flower pollination algorithm (cFPA).
The localization in WSN and six benchmark functions are used to validate the performance
of the proposed method. Related works, methodology details, and experimental results
will present as following sections.

2. Localization model. WSN assumes with n nodes that deployed in two-dimensional
space of Z2, and m anchor nodes. There are n − m unknown nodes in which m < n.
Distance of each node to its nearby neighbors within its ranging distance is measured after
a network deployed. All of the successful distance measurements along with the node
specifications are transferred to a base station using multi-hop routing. We construct a
graph after all of the measured distances are received at the base station. This graph for
WSN can be modeled as G with (V,E) where V and E are the nite set of vertices and
edges respectively. A set of sensor nodes is represented the vertices V with {v1, v2, ..vn}.
The connection of these vertices is represented network links as the set of edges E with
{e1,2, e1,3, ..ei,j, ..en−1,n}. If a connected component ofG, G1 = (V1, E1) does have not three
or more anchor nodes, then all the sensor nodes in the subgraph G1 are not localizable.
We can assume each connected component of graph G has at least three anchors.
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The objective localization in a WSN is to estimate the coordinates of n−m unknown
nodes utilize the previous information about the sites of m anchor nodes. The objective
function is established for the node localization included two-phase process. First is as
ranging process which nodes estimate their distances from anchor nodes using the signal
propagation time or the received signal strength indicator (RSSI), and second is position
estimation of the nodes, i.e. using the ranging information [11]. The localization error is
minimized by applying the optimization algorithms. In the first phase, each anchor nodes
in the deployment estimates its distance from each of its neighboring target nodes. RSSI
ranging technology can obtain the internode reaching distance.

The distance between the unknown node o(x, y) is denoted d1, d2, .., dn and the an-
chor node is obtained by the hop count and the average hop distance between nodes.
The ranging error is ε1, ε2, .., εn the estimated coordinates (x, y) satisfies the following
inequalities: 

d1
2 − ε12 < (x− x1)2 + (y − y2)2 ≤ d1

2 + ε1
2

d2
2 − ε22 < (x− x2)2 + (y − y2)2 ≤ d2

2 + ε2
2

. . . .

. . . .

dn
2 − εn2 < (x− xn)2 + (y − yn)2 ≤ dn

2 + εn
2

(1)

where d is the actual distance between two nodes, and ε is a ranging error. Localization
problem is transformed into finding coordinates (x, y) which minimize objective function
f(x, y) of formula (2). This optimization f(x, y) guarantees minimum total error.

f(x,y) =
m∑
j=1

n∑
i=m+1

∣∣∣∣√((xi − xj)2 + (yi − yj)2)− dj
∣∣∣∣ (2)

where (xi, yi) and (xj, yj) are coordination of node i and j location. dj is the distance
between unknown node to the anchor node j.

3. Improvement of Flower Pollination Algorithm Optimization.

3.1. Meta-heuristic Flower Pollination Algorithm. A recently population-based al-
gorithm drawn inspiration from two pollination processes of the flowering plant including
self-pollination and cross-pollination is known as Flower Pollination Algorithm (FPA)
[10]. In the flowering plant, pollens are transported by pollinators according to the rules
of Levy flights, and they can self-pollinate randomly. Moreover, two universal concepts
of guides the optimal process in the population-based algorithm are for exploring and
exploiting the search space. A self-pollination of the flowering plant viewed as local pol-
lination that expressed for exploitation in the search area. However, a cross-pollination
considered as global pollination that represented for exploration a promising area search.

How to switch between the exploring and exploiting phrases in pollination for FPA, a
switching probability p ∈ [0, 1] can be used to control their characteristics of local and
global pollination. Let’s xtj and xtk be solution vector of the pollen, i.e. pollen in the same
plant or the flowers. We could model for the local pollination as following.

xt+1
i = xti + u×

(
xtj − xtk

)
(3)

where u is drawn from a uniform distribution in [0, 1]. The update solution vector can
convert into updating equations for the cross-pollination. In the global pollination, flower
pollen gametes are carried by pollinators such as insects. Insects can often fly and move
in a much longer range. A Levy flight can express flying insects over a long distance with
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various length steps, and be used to mimic this characteristic efficiently. Let’s L be a
Levy distribution with active as drawn formula.

L =
λΓ (λ)× sin

(
πλ
2

)
π × si+λ

(4)

where Γ(λ) is the gamma function, and this distribution is valid for large steps s > 0.
Γ(λ) is called the step size like the parameter that corresponds to the strength of the
pollination. Updating locations of pollen are simulated as given.

xt+1
i = xti + γ × L (λ)×

(
xti − g∗

)
(5)

where g∗ is the current best solution found so far, γ is a scaling factor to control the
step size and t is the current generation or iteration.

In the evaluation for updating pollination, according to the fitness function, if xtj and
xtk come from the same species or selected from the same population, u becomes a local
random walk. Because of the flower pollination processes can occur at both local and
global, to imitate this feature, the proximity probability p is to switch between natural
global pollination to intensive local pollination. The switching probability can be used
likely p ∈ [0, 1] to control between the local and worldwide pollination.

3.2. Compact Flower Pollination Algorithm. The estimated distribution algorithm
(EDA)[12] can process a representation of probabilistic to get fewer variable memory,
rather store the population solution. The compact methods use the principle of EDA to
simulate the operations of the population-based methods. A probabilistic model is used
to represent these operations in the population-based algorithm. The real population of
the algorithms considered as a virtual population in compact algorithms. The virtual
population can configure by considering probability density functions (PDFs) [13] based
on EDA. Not all of population of a solution stored in memory, but it generates a few new
candidate of solution based on probability distribution store in memory. A generated new
candidate solution is by being iteratively biased toward a promising area of an optimal
solution. The probabilistic model of a population of solutions represents the probability
vector of each component learned from previous generations. The structure of this vector
was called Perturbation Vector (PV) [9]. These principles apply to the improvement of
FPA [10] such compact FPA is presented as follows.

For compact the actual population-based of FPA, a virtual population will express
by encoding within a data structure of probabilistic vector. A real-valued prototype
vector represents the probability of each component represented in a candidate solution.
The specified probability for each element in new candidate solutions maintained in the
optimum process. The information-processing objective of the compact algorithm is to
simulate the behavior of pollination of FPA, but it used with a much smaller memory.
PV generates a candidate solution probabilistically from the vector and the competing
components toward to the better solutions that change the probability vector. The created
trial solutions stayed to allocate in boundary constraints. PV is a matrix for specifying
the two parameters of mean and standard deviation values in the PDF of each design
variable. It can be defined as.

PV t =
[
µt, σt

]
(6)

where t is time steps. A truncated Gaussian (PDF) for µ and σ values are within the
interval of (-1, +1). The PDF normalizes the amplitude of area equal to 1. A generated
candidate solution xi is produced from PV (µi, σi). The associated Gaussian to mean µ
and standard deviation σ in PV is given as.
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Figure 1. A sampling scheme for generating new solution in the compact algorithm

Pi (x) =

√
2
π
×exp

(
− (x−µi)2

2σ2
i

)
σi

(
erf
(
µi+1√
2σi

)
-erf

(
µi−1√
2σi

)) (7)

where Pi(x) is the corresponding value of the PDF to variable xi. The error function
indicated as erf is fined in [14]. PDF could have corresponded to Cumulative Distribution
Function (CDF) by constructing Chebyshev polynomials [15]. The CDF describes the
probability that a real-valued random variable X = {x1, x2, ..x k}, k is constant. The
newly calculated value of xi is inversed to from CDF. A parameter is suggested as a
weight to control the probability of sampling of µi in PDF (7) between left [−1, µi] and
right [µi, 1] as given in Eqs (8) and (9).

Li (x) =
−
√

2
π

σi(erf
(
µi+1√
2σi

) × exp

(
−(x− µi)2

2σ2
i

)
for − 1 ≤ x ≤ µi (8)

Ri (x) =
−
√

2
π

σi(erf
(
µi−1√
2σi

) × exp

(
−(x− µi)2

2σ2
i

)
forµi ≤ x ≤ 1 (9)

The generating new candidates of the flowers are employed by sampling from PV. Fig.
1 shows a sampling scheme for generating new solution toward to promising area in the
search space.

Two designed variables compete to find out who is win or lose. The comparison between
two design variables for individuals of the pollen is performed the win solution biases the
PV. Fig 2 shows the competing scheme for winner and loser. PV samples these pollen.
The win or lose vector is judged according to the fitness function, i.e., its value is better
or worse. The new solution is then evaluated and compared against xtk and g∗ in (5) and
(3) to determine whether the winning and losing individual is.

The elements µt+1
i and σt+1 of the updated PV for the new solution for winner and

loser are expressed over the differential iterative as follows.

µt+1
i = µti +

1

Np

(winneri − loseri) (10)
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Figure 2. The competing scheme for judging winner or loser

Figure 3. The updated PV scheme of PDF for new candidates

where Np is virtual population size. This parameter of Np is only typical in com-
pact algorithms because of it does not strictly correspond to the population size as in a
population-based algorithm, for further reported issue in [16]. Regarding σ values, the
update rule of each element is given by:

σt+1
i =

√
(σti)

2 + (µti)
2 −

(
µt+1
i

)2
+

1

Np

(winner2i − loser2i ) (11)

For further perturbing for mean and standard deviation values by adding a weight
parameter is to enhance diversity distribution. The values of µt+1

i and σt+1 of PV are
modified as given in Eqs. (12), (13), for i = 1, 2, .., d.

µi = µi + βiτ (12)

σi =
√
σ2
i + αiτ (13)

where τ is a weight parameter representing the maximum value of the perturbation, βi
is a uniform random number in [-1, 1] and αi is a random number in [0, 1]. The tness
value of the position xt+1 is calculated and compared with g∗ to determine a winner and a
loser. The probability vector PV is updated by applying Eqs (12) to (13). Current values
for xt+1 and vt+1 are retained for subsequent algorithm steps. The update PV scheme is
carried out in Fig.3.

The behavior of FPA simulated in compact algorithm by sampling probabilistic models
for a population of solutions. The probabilistic expression simulated the operations in
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Figure 4. A pseudo code for improving FPA scheme

Table 1. Six selected test functions as a benchmark

optimal algorithms. The working principle of compact method provides a pseudo code
for improving FPA as shown in Fig. 4.

3.3. Experiment with numerical problems. Six optimal numerical problems as bench-
mark tests [17] are utilized for testing the accuracy and the speed of the compact flower
pollination algorithm (cFPA). The solution quality of the cFPA method compared with
the original flower pollination algorithm (FPA). The experiments employed for all the test
functions averaged values over 25 runs. Each function contains the full iterations of 2000
and is repeated by different random seeds over twenty-five runs. The optimization goal
is to minimize the output for all benchmarks. The initial range, the dimension, and total
iteration number for all test functions listed in Table 1.

The parameters setting for FPA and cFPA are as follows. Population size n for FPA is
set to 30, the dimension of the solution space M 30. The final result obtained by taking
the average of the outcomes from all runs. The results compared with the FPA.
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Table 2. The comparison between FPA and cFPA regarding quality of
the performance evaluation and speed

Table 2 compares the quality of performance and running time for numerical problem
optimization between cFPA and FPA. In Table 2, columns of the FPA and the cFPA are
the averages of the outcomes of 25 runs for six test functions respectively. RD is a rated
deviation. It means the percentage of the deviation on the previous version of algorithm
outcomes for the cFPA respectively. Clearly, the most cases of benchmark functions for
optimizing in both cFPA and oBC have the small percentage of the deviation. It says
that the accuracy of the cFPA is as good as that of the FPA. The average proportion
of the deviated rate of eight test functions evaluation is only 5%. But the average time
consuming for cFPA is 46% faster than that for FPA.

Fig. 5 shows the averaged function minimum values for four test functions in 25 runs
output with the same iteration of 2000. Clearly, all cases of testing benchmark functions
for the compact FPA (red lines) are equal to or faster than original FPA in convergence.

Fig. 5 compares the performance quality of running with different population sizes for
test functions between cFPA and FPA. The most cases of testing functions for cFPA is
smaller than that for FPA in convergence. Most cases of test functions for cFPA are not
affected as variety population size as in FPA. The mean of obtained value functions for
cFPA is more stable than the FPA due to the virtual population in cFPA.

Obverse Table 3, the computations of saving memory in two algorithms cFPA and
FPA use. Clearly, the number of memory variables of cFPA use is smaller than those of
FPA use in the same condition of computation such as iterations. The real number of
population or population size for FPA is N , but that size for cFPA is only one. The used
equations for optimizing computation in cFPA is six such as Eqs. (03), (04), (05), (07),
(12) and (13). However, the used equations for optimizing computation in FPA is three
of them such as Equations (03), (04), and (05). But the computing complexity of cFPA is
the only 6×T × iteration whereas those of FPA is 3×T ×N × iteration which is higher
N/2 times. Thus, the rate of saving memory of the computing complexity of cFPA per
the computing complexity of FPA equals to 2/N .

Figure 4 illustrates the executing time comparison of cFPA and FPA in 25 runs with
iteration 2000 for eight benchmark functions. It is clear that the most cases of test
functions for executing time in the proposed cFPA (red colored bar) are smaller than
those executing in FPA (blue colored bar). The average consuming time of eight tests for
cFPA is 85% faster than those for FPA. The reason for a fast processing speed is that
some the memory stored parameters for cFPA are smaller than those for FPA.
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Figure 5. Convergence comparison of cFPA and FPA algorithms for four
first benchmark functions

Table 3. The comparison of memory variables between cFPA and FPA

The results regarding the comparison for performance of the proposed cFPA outcomes
with the other Compact algorithms in the literature for 6 test functions is available in
Table 4, where it shown that cFPA outperforms its competitors. The best results in
among them for each function have highlighted in rows. The performance of compared
ratio r is set for each pair of comparisons of FPA with other methods of the cPSO, cDE,
and rcGA respectively. The noticed indication ′+,− and ∼’ mean the ’better’, ’worse’,
and ’approximation’ of the deviation on their outcomes respectively. Visibly, almost the
highlighted cases of testing benchmark functions belong to the proposed method of the
cFPA. It means that the proposed method is an alternative method. According to Fig-
ures of 4 compact methods, the cFPA method shows a comparatively better convergence
behavior on the selected tests than the other algorithms.

4. Localization optimization in WSN based on cFPA. In this section, we can for-
mulate the position estimation of the given unknown nodes as an optimization problem
that involving in minimization of a represented objective function about the localization
precision. We investigate the estimation of hidden nodes for the optimal localization in a
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Table 4. Comparison the outcomes of the proposed method of cFPA with
the state of the art of compact algorithms such as rcGA, cDE, cPSO for 6
test functions

Figure 6. Comparison of six compact algorithms of rcGA, cDE, cPSO
and cFPA, for the testing function F1

sparse network based on the proposed cFPA. The simulations have been run cFPA for the
objective function as in Eq.(2). Each localizable unknown node can be estimated cFPA
algorithm independently to localize itself by finding its coordinates (x, y). The different
situations in the localization issue have been implemented varying scenarios such as nodes
densities, varying anchor nodes, and diversity of the solutions for optimization localiza-
tions. We conducted sensor localization for the whole sensor network in the following
manner. The network consists of total n nodes are randomly deployed in a specified area
with m anchor nodes being randomly generated from these nodes. Each node can commu-
nicate in range of RSSI as assuming that ranging error eij follows a Gaussian distribution.
An unknown node can be estimated its location if it has at least 3 non-coplanar anchor
nodes in neighbor. That node is said to be localizable node. Each localizable node mea-
sures its distance from each of its neighboring anchors. n−m is actual distance between
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Figure 7. The optimal location of unknown nodes in WSN based on com-
pact flower pollination algorithm

the localized nodes and anchor nodes. The objective function for localization problem is
defined as in Eq.(2). The cFPA method evolves the optimal location of unknown nodes,
i.e. (x, y) by minimizing the error function.

The setting simulation is in specified sensor network area (e.g.a 50m times 50m) with
n unknown nodes e.g.100 unknown nodes and m like the percentage of anchor nodes
e.g. 20 as shown in Fig.7. The coordinates of each node (x, x) are randomly dispersed
in this area. Each node has a transmission range of 25m. In the simulation, the size
of the pollen population is fixed at 30, and the number of iterations is 1000. Each
result is the average of 30 replications. Simulation results show the effectiveness of the
proposed objective function in tackling the fine-grained localization problem in WSNs.
The results are compared with those obtained from the firefly algorithm (FA), parallel
firefly algorithm (pFPA) [18] and the original method of flower pollination algorithm
(FPA) [19]. The average localization error is defined as the distance between the real
and estimated locations of an unknown node which is computed as the mean of square of
distance of computed node coordinates.

Age =

n∑
i=m+j

√
((xi − xj)2 + (yi − yj)2)

NL

(14)

4.1. Effect of Anchor node density. The obtained results by the cFPA for real posi-
tion of unknown nodes and the coordinates of the estimated nodes in a trial run presented
in Fig.8. We experimented with the anchor node density and unknown node density to
verify the factors influencing to the localization error and number of localized nodes.

Table 5 indicates the localization results taken at the given unknown node number of
100 and transmission range of 25m with the percentage of anchor nodes is varying from
10% to 30%. Observed, if having more number of anchors is in network space, the most
favorable references for unknown nodes are. The number of nodes that get localized relies
on the number of anchors. Less number of localized nodes are due to insufficient anchor
nodes in the surrounding. The number of localized nodes has a significant increase, and



An Improvement of FPA for Node Localization Optimization in WSN 497

Table 5. The effect of the proportion for localization errors with different
anchor nodes rate

Figure 8. Comparison of four methods in the localization errors with the
different anchor node proportion

the average localization error decreases with the increase of anchor node density as shown
in Fig. 8.

4.2. Effect of Anchor node density. We also analyzed the effect of unknown node
density for the performance of localization. The analyzed results presented in Table 6.
The varying density of unknown node has resulted on the success rate of localized node.
Clearly, if the higher density of nodes is, the estimated error is the less, but the cost is
high.

In generally, average localization error decreases when unknown node density increases
shown in Fig. 9. The comparison curves of the approaches illustrated in Fig. 9 shows
that the proposed method archived more accuracy and convergence rate than others.

5. Conclusion. In this paper, we proposed an improvement of flower pollination algo-
rithm (FPA) based on the compact technique for optimization problems of the class of
devices limited memory. In the proposed method, we replaced the actual design variable
of solutions of FPA with a probabilistic representation of the population. A probabilistic
model was used to generate new candidate solutions with searching promising solutions
so far. The probability density functions (PDF) and cumulative distribution functions
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Table 6. The effect of the density for localization errors with different node number

Figure 9. Comparison of the four methods for the effective density of
unknown nodes to localization errors

(CDF) are explored thoroughly to construct the operations of selecting and optimizing
behaviors. This probabilistic model can open a valid alternative optimization method for
even on the available devices whose limited sources hardware.

Six selected numerical optimization problems, and a localization problem in wireless
sensor network (WSN) were used to evaluate the proposed method regarding the accuracy,
computational time and the saving memory. The simulation results compared with those
obtained from the other methods such as the original version of FPA, GA, DE, and PSO
show that the proposed method produces considerable improvements of reducing variable
storing memory and running time consumption. We also compared the node localization
optimization in WSN obtained from the proposed method with the other approaches in
the literature. The proposed method archived more accuracy and convergence rate than
others, and it can provide an effective way of using a limited memory.
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