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Abstract. We consider sparsity signal restoration with impulsive noise by sparsity reg-
ularization. It is challenging due to the fact that both fidelity and regularization term lack
of differentiability. Moreover, for ill-conditioned problems, sparsity regularization is often
unstable. We propose a novel dual splitting method and show that one can overcome the
non-differentiability and instability by adding a smooth splitting `2 regularization term to
the original optimization functional. The functional is split into an `1+`2 part and an
`2+`1 part. The advantage of the proposed method is that the convex duality reduced to
a constraint smooth functional which can be solved easily by projected gradient method.
Moreover, it is stable even for ill-conditioned problems. Some experiments are performed,
using compressed sensing and image inpainting, to demonstrate the efficiency of the pro-
posed approach.
Keywords: Sparsity signal, Impulsive noise, Inversion, Duality, Splitting

1. Introduction. In the present manuscript we are concerned with ill-posed linear op-
erator equation

Ax = y, (1)

where x is sparse with respect to an orthonormal basis and A : D(A) ⊂ X → Y is a
bounded linear operator. In practice, exact data y are not known precisely, but that only
an approximation yδ with

‖ y − yδ ‖≤ δ (2)

is available. We call yδ the noisy data and δ the noise level. It is well known that the
conventional method for solving eq.(1) is sparsity regularization, which provides an effi-
cient way to extract the essential features of sparse solutions compared with oversmoothed
classical Tikhonov regularization.

In the past ten years, sparsity regularization has certainly become an important con-
cept in inverse problems. The theory of sparse recovery has largely been driven by the
needs of applications in compressed sensing[1, 2], bioluminescence tomography[3], seis-
mic tomography[4], parameter identification[5], etc. For accounts of the regularizing
properties and computational techniques in sparsity regularization we refer the reader
to [5, 6, 7, 8, 9, 10] and the references given there. In general, sparsity regularization is
given by

min
x
‖ Ax− yδ ‖2

`2 +α ‖ x ‖pw,p, (3)
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where ‖ x ‖pw,p=
∑
γ

ωγ|〈ϕγ, x〉|p(1 ≤ p ≤ 2), α is the regularization parameter balancing

the fidelity ‖ Ax− yδ ‖2
`2 and regularization term ‖ x ‖pw,p. The functional in eq.(3) is not

convex if p < 1, it is challenging to investigate the regularizing properties and numerical
computing method of minimizers. Limited work has been done for p < 1, we refer the
reader to references[11, 12, 13, 14] for a recent account of the theory. In this paper, we
will focus our main attention on the situation of p = 1.

The aim of this paper is to consider a regularization functional of the form

min
x
‖ Ax− yδ ‖`1 +α

∑
γ

ωγ|〈ϕγ, x〉|. (4)

We call eq.(4) `1+`1 problem. A main motivation to investigate the `1+`1 problem is
that noisy data yδ often contain impulsive noise. For Gaussian noise, `2 fidelity is a
natural choice. However, a typical non-differentiable fidelity used in application involving
impulsive noise is the `1 fidelity, which is more robust than `2 fidelity[15].

Nowadays `1 fidelity has received growing interest in the inverse problems where so-
lutions are sparse with respect to an orthonormal basis. Minimizers of cost-functions
involving `1 fidelity combined with sparsity regularization have been studied. We refer
the reader to [17] and the references given there.

Though `1 fidelity is robust, more researchers prefer to use `2 fidelity because of its dif-
ferentiability. Hence a key issue for the `1 fidelity is the numerical computing methods. In
the past few years, numerous algorithms have been systematically proposed for the `1+TV
problems. On the other hand, in spite of growing interests in the `1 fidelity, we can indi-
cate limited work has been done for numerical methods of `1+`1 problems. For sparsity
regularization, the popular algorithms, e.g. homotopy (LARS) method[19], iteratively
reweighted least squares (IRLS) method [20] and iterative thresholding algorithm[21, 22]
cannot be directly applied to `1+`1 problem due to the fact that both fidelity and regular-
ization term lack of differentiability. Only a few papers, in which numerical algorithms for
`1+`1 problems have been discussed systematically. For ill-conditioned problems, these
methods are often unstable[23][Chap.5]. Moreover, the researchers assume that the solu-
tion is sparse itself, which is different from the general assumption that the solution is
sparse with respect to an orthonormal basis. In[18], Borsic and Adler proposed a Primal
Dual-Interior Point Methods (PD-IPM) for EIT problem, which is efficient at dealing
with the non-differentiability. However, they didn’t give the convergence proof. Yang,
Zhang and Yin reformulated the `1+`1 problem into the basis pursuit model which can be
solved effectively by ADM method[17]. It is a competitive method compared with other
algorithms for compressive sensing. In [29], Xiao, Zhu and Wu applied ADM method
to `1+`1 problem directly, Numerical results illustrated that the proposed algorithm per-
forms better than Yall1[17].

In this paper, we investigate numerical method for `1+`1 problems. As above men-
tioned, dual is a conventional technique to solve the Tikhonov regularization with `1

fidelity. However, there are some limitations to this approach to `1+`1 problems due to
the fact that it’s difficult to obtain the dual formulation of `1+`1 problems. Inspired by
[16], a smooth spliting `2 term is added to original functional of regularization. The func-
tional is split into an `1+`2 part and an `2+`1 part. The dual problem of this new cost
functional is reduced to a constraint smooth functional. Moreover, the smooth splitting
`2 regularization term can improve the stability. We use projected gradient method to
seek for the minimizers of the constraint functional.

An outline of this paper is as follows. We devote Section 2 to introduce some notations
and preliminaries. In Section 3, inspired by the theory of duality, we construct a new
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functional and investigate the convergence of the minimizers to the functional. In Section
4, we show that the Frechel duality of the functional is equal to a constraint smooth
functional and the projected gradient method can be used to compute the minimizers.
Numerical experiments involving compressed sensing and image inpainting are presented
in Section 5, showing that our proposed approaches are robust and efficient.

2. Notation and Preliminaries. The specific notations will be introduced and recalled
in the following sections. For the approximate solutions of Ax = y, we consider the
minimization of the regularization functional

Jα,δ(x) =

{
‖ Ax− yδ ‖`1 +αR(x), x ∈ dom(A) ∩ dom(R),

+∞ , x /∈ dom(A) ∩ dom(R),
(5)

where R(x) :=
∑
γ

ωγ|〈ϕγ, x〉|, the subdifferential of R(x) at x is denoted by ∂R(x) ⊂ X.

All along this paper, X and Y denote Hilbert space which is a subspace of `2 space and
〈·, ·〉 denotes the inner product. A : dom(A) ⊆ X → Y is a bounded linear operator and
dom(A)∩dom(R) 6= ∅. We denote with A∗ the adjoint of the operator A. We will always
work on real vector spaces, hence, in finite dimensions, A∗ usually coincides with the
transposed matrix of A. (ϕγ)γ∈Λ ⊂ X is an orthonormal basis where Λ is some countable
index set. From now, we denote

xγ = 〈x, ϕγ〉,

‖x‖`p = (
∑
γ

|〈ϕγ, x〉|p)
1
p = (

∑
γ

|xγ|p)
1
p , 0 < p < +∞,

and

‖x‖`∞ = Maxγ|xγ|, p = +∞

Associated to these norms we denote their unit balls by

B`∞(1) = {p ∈ X : ‖p‖`∞ ≤ 1}

and the balls of radius α by

B`∞(α) = {q ∈ Y : ‖q‖`∞ ≤ α}

We denote by xδα the minimizer of the regularization functional Jα,δ(x) for every α > 0
and use the following definition of R(x)-minimum norm solution.

Definition 2.1. An element x† is called a R(x)-minimum norm solution of linear problem
Ax = y if

Ax† = y and R(x†) = min{R(x)|Kx = y}.

We define the sparsity as follows:

Definition 2.2. x ∈ X is sparse with respect to {ϕγ}γ∈Λ in the sense that supp(x) :=
{γ ∈ Λ : 〈ϕγ, x〉 6= 0} is finite. If ‖supp(x)‖0 = s for some s ∈ N, the x ∈ X is called
s-sparse.
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3. Primal Problem. We consider the splitting of `1+`1 problem. let ωγ in (4) take the
same value, i.e. ωγ = µ > 0 for all γ ∈ Λ. It is reasonable because convergence can be

obtained when
δ

α
→ 0[6]. Let α := αµ = αωγ, then (4) is equivalent to

min
x
‖ Ax− yδ ‖`1 +α

∑
γ

| 〈ϕγ, x〉 | . (6)

Let u = (x1, x2, · · ·, xγ, · · ·) ∈ `2, where xγ = 〈ϕγ, x〉. In addition, we denote by D :
`2 → `2 a dictionary which satisfied with u = Dx and u† = Dx†. For example, in the
field of wavelet transform, D is a wavelet decomposition operator and DT is a wavelet
reconstruction operator[24, 25]. Let K = A ◦DT , then (4) is equivalent to

P : min
u
{Jα(u) =‖ Ku− yδ ‖`1 +α ‖ u ‖`1}. (7)

Dual is a popular technique to solve Tikhonov regularization with `1 fidelity. However,
there are some limitations to this approach to solve (7). The main difficulty is that
both the `1 fidelity and the `1 regularizaiton term are non-differentiable. Moreover, for
ill-conditioned problems, sparsity regularization is often unstable. We add the smooth

splitting penalty
1

2β
‖ u− v ‖2

`2 to (7) to construct the following functional

Pβ : min
u
{Jα,β(u) =‖ Ku− yδ ‖`1 +α ‖ v ‖`1 +

1

2β
‖ u− v ‖2

`2}. (8)

The advantage of problem (8) in place of (7) is that the dual problem of (8) is a constraint
smooth functional and projected gradient algorithm can be used to compute minimizers.
Moreover, the regularization effect of `1 penalty is weak, `2 penalty can improve the sta-
bility of (7). Next we will investigate the convergence of the minimizers to the functional
Pβ as β tends to zero.

Theorem 3.1. Let α be fixed and {βk} be a sequence converge to zero. Then the minimiz-
ers {(uβk , vβk)} of the problem (8) has a subsequence converging to (u∗, v∗) with u∗ = v∗

being a minimizer of the problem (7).

Proof: Let u† be a global minimizer of the problem (7). By the definition of (uβk , vβk),
we have

Jα,βk(uβk , vβk) =‖ Kuβk − yδ ‖`1 +α ‖ uβk ‖`1 +
1

2βk
‖ uβk − vβk ‖2

`2

≤‖ Ku† − yδ ‖`1 +α ‖ u† ‖`1< δ + α ‖ u† ‖`1 ,
(9)

hence that

‖ uβk ‖`1<
δ

α
+ ‖ u† ‖`1 (10)

and

‖ vβk ‖2
`2< 2βk

δ

α
+ 2βk ‖ u† ‖`1 (11)

Since α is a fixed value and βk → 0, there exists a constant C > 0 such that

‖ vβk ‖2
`2< 2βk

δ

α
+ 2βk ‖ u† ‖`1< C (12)

It follows that {(uβk , vβk)} is uniformly bounded. Therefore, a subsequence (uβn , vβn) of
(uβk , vβk) and (u∗, v∗) exist such that

(uβn , vβn) −→ (u∗, v∗). (13)
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From (9), we have

‖ uβk − vβk ‖2
`2≤

2βk[‖ Ku† − yδ ‖`1 +α ‖ u† ‖`1 −(‖ Kuβk − yδ ‖`1 +α ‖ uβk ‖`1)].
(14)

By the weak lower semicontinuity of the norm, we obtain that

‖ u∗ − v∗ ‖2
`2≤ lim inf

u
‖ uβk − vβk ‖2

`2≤
lim
k→∞

2βk[‖ Ku† − yδ ‖`1 +α ‖ u† ‖`1 −(‖ Kuβk − yδ ‖`1 +α ‖ uβk ‖`1)] = 0.
(15)

Therefore, we deduce that u∗ = v∗. From (9), we obtain

‖ Ku∗ − yδ ‖`1 +α ‖ u∗ ‖`1≤ lim
k→∞

‖ Kuβk − yδ ‖`1

+ lim
k→∞

α ‖ uβk ‖`1 + lim
k→∞

1

2βk
‖ uβk − vβk ‖2

`2≤‖ Ku† − yδ ‖`1 +α ‖ u† ‖`1
(16)

Therefore u∗ = v∗ being a minimizer of the problem (7) and the proof is complete.

4. Dual Problem and Computation of Minimizers. It is challenging to solve (8)
directly due to the fact that two `1 term lack of differentiability. Next we consider the
dual problem of Pβ. We will show that the constraint smooth minimization problems P∗β

P∗β :

min
β

4
‖ K∗p ‖2

`2 +
β

4
‖ q ‖2

`2 −〈p, yδ〉,
s.t. ‖ p ‖`∞≤ 1, ‖ q ‖`∞≤ α,K∗p− q = 0.

(17)

is the dual problem of Pβ. The duality is a constraint smooth functional which could be
solved easily by projected gradient method.

Theorem 4.1. P∗β is the dual problem of Pβ. The solutions (uβ, vβ) of Pβ and (pβ, qβ)
of P∗β have the following relation

βK∗pβ = uβ − vβ,
−βqβ = −uβ + vβ,

〈Kuβ − yδ, p− pβ〉 ≥ 0,

〈vβ, q − qβ〉 ≥ 0

(18)

for all ‖ p ‖`∞≤ 1, ‖ q ‖`∞≤ α.

Proof: Let

F (u, v) =
1

2β
‖ u− v ‖2

`2 , R(u) =‖ u− yδ ‖`1 +α ‖ v ‖`1 ,Λ(u, v) = (Ku, v). (19)

then problem Pβ can be rewritten as

inf
u∈`2

F (u, v) +R(Λ(u, v)). (20)

Let us denote by F ∗ and R∗ the conjugate function of F and R. By the Fenchel
duality[26][Chap 3,Chap 10], it follows that

F ∗(p, q) =


β

4
‖ p ‖2

`2 +
β

4
‖ q ‖2

`2 , p+ q = 0,

∞, else
(21)
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and

R∗(p) =

{
〈p, yδ〉`2 , if ‖ p ‖`∞≤ 1, ‖ q ‖`∞≤ α

∞, else.
(22)

In Jα,δ(x), the functional F and R are proper, convex lower semicontinuous and continuous
at 0. By the Fenchel duality theorem[26](Chap 3, Prop.2.4,Prop.4.1,Rem.4.2), it is easy
to show that

inf
(u,v)∈`2

F (u, v) +R(Λ(u, v)) = sup
(p,q)∈`2

−F ∗(Λ∗(p, q))−R∗(−p,−q). (23)

i.e.
inf

(u,v)∈`2
F (u, v) +R(Λ(u, v)) = − inf

(p,q)∈`2
F ∗(Λ∗(p, q)) +R∗(−p,−q). (24)

And the right side of (24) has at least one solution (pβ, qβ).
Since (uβ, vβ) and (pβ, qβ) are minimizers of Pβ and P∗β, we have that

F (uβ, vβ) +R(Λ(u, v)) + F ∗(Λ∗(pβ, qβ)) +R∗(−pβ,−qβ) = 0. (25)

Moreover, the extremality condition (25) is equivalent to the Kuhn-Tucker conditions

(−pβ,−qβ) ∈ ∂R(Λ(uβ, vβ)) and Λ∗(pβ, qβ) ∈ ∂F (uβ, vβ). (26)

By the definition of the subgradient and (−pβ,−qβ) ∈ ∂R(Λ(uβ, vβ)) and Λ∗(pβ, qβ) ∈
∂F (uβ, vβ), it follows that

Kuβ − yδ ∈ ∂I{‖−pβ‖`∞≤1} (27)

and
vβ ∈ ∂I{‖−qβ‖`∞≤α}. (28)

Then we have {
〈Kuβ − yδ, p− pβ〉 ≥ 0,

〈vβ, q − qβ〉 ≥ 0
(29)

By the definition of the subgradient and Λ∗(pβ, qβ) ∈ ∂F (uβ, vβ), it follows that{
βK∗pβ = uβ − vβ,
−βqβ = −uβ + vβ

(30)

and the proof is completed.

As above mentioned, the functional (8) can be transformed using Fenchel duality into
a smooth functional with a box constraint, which is easy to compute. For linear equality
constraint K∗p − q = 0, we consider an augmented Lagrangian formulation of this con-
straint, which can be solved efficiently using classical Arrow-Hurwicz method proposed
by[27, 28]. The augmented Lagrangian functional f(p, q, λ) is defined by

f(p, q, λ) =
β

4
‖ K∗p ‖2

`2 +
β

4
‖ q ‖2

`2 −〈p, yδ〉+ 〈λ,K∗p− q〉+
c

2
‖ K∗p− q ‖2

`2 , (31)

then the frechét derivative of f with respect to p, q and λ are

fp(p, q, λ) =
β

2
KK∗p− yδ + 〈λ,K∗〉+ cK(K∗p− q), (32)

fq(p, q, λ) =
β

2
q − yδ − λ− c(K∗p− q), (33)

and
fλ(p, q, λ) = K∗p− q. (34)
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By setting unit balls by

B`∞(1) = {p ∈ X : ‖p‖`∞ ≤ 1}
and the balls of radius α by

B`∞(α) = {q ∈ Y : ‖q‖`∞ ≤ α}
we denote by PB(c)(x) the orthogonal projection on the ball B(c)

PB(c)(x)(i, j) = c
x(i, j)

max(c, | x(i, j) |)
. (35)

Given initial value p0, q0 and λ0 and a constraint on step length γp γq and γλ, i.e

0 < γmin ≤ γp, γq, γλ ≤ γmax. (36)

Let step length σ ∈ (0, 1). We use the convergence criteria given by

‖ PB(1)(pk + γpd
k
p)− pk ‖`2≤ ε (37)

and
‖ PB(α)(qk + γqd

k
q)− qk ‖`2≤ ε. (38)

The algorithm is given as follows:
Algorithm 1 Projected Gradient method for P∗β
1: Set p0 = q0 = λ0 = 0; set step sizes γp, γq, γλ, c and σ; k=1,
2: Compute dkp = fp(pk−1, qk−1, λk−1),

dkq = fp(pk−1, qk−1, λk−1),

dkλ = fp(pk−1, qk−1, λk−1),
3: Compute pk = PB(1)(pk−1 + γpd

k
p),

qk = PB(α)(qk−1 + γqd
k
q),

λk = λk−1 + σγλd
k
λ,

4: k = k + 1,
Until the convergence criteria obtained or k = kmax.

5. Numerical Simulations. In this section, we present some numerical experiments to
illustrate the efficiency of the proposed method. In Section 5.1, numerical experiments
involve compressive sensing. We aim to demonstrate that `1 fidelity is more stable than
the `2 fidelity and is capable of handing impulsive noises. In Section5.2, we compare
the performance of the splitting method with the alternating direction mehtod (ADM)
and TNIP method. We discuss an ill-posed problem where the condition number of
linear operator A is 255, we aim to demonstrate that the proposed method is stable. In
Section 5.3, we discuss the image inpaiting where images are sparse with respect to the
Daubechies wavelets. For image inpainting, the linear operator A is moderate ill-condition
and the condition number is around 4000. In order to compare the restoration results, the
quality of the computed solution x is measured by relative error Rerr and PSNR which
are respectively defined by

Rerr(x) =
‖x− x†‖
‖x†‖

× 100% (39)

and

PSNR(yδ) = −20log10(
‖x− x†‖

n
). (40)

All experiments were performed under Windows 7 and Matlab R2010a on HP ProBook
4431s with Intel Core i5 2410M CPU 2.30GHz 2.30GHz and 4GB of memory.
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5.1. Comparison with `1 and `2 fidelity. This example involves compressive sensing
problem

Ax = yδ (41)

where matrix A80×200 is random Gaussian, yδ = Ax† + δ is the observed data containing
white noise or impulsive noise. The true solution x† is 16-sparse with respect to natural
basis of `2 space which is defined by

ϕγ = eγ = (0, 0, · · · , 0, 1︸ ︷︷ ︸
γ

, 0, · · · ).
(42)

White noise is generated such that data yδ attains a desired SNR, which is defined by

SNR(yδ) = 20log10(
‖yδ − E(yδ)‖

‖δ‖
) (43)

The impulsive noise is measured by relative error, which is defined by

Rerr(δ) =
‖y − yδ‖
‖y‖

× 100% (44)

Figure 1 shows the performance of the `1 and `2 fidelities with different impulsive noise
levels. The left column describes the data which are contaminated by different impulsive
noise levels. The Rerr(δ) of noise level are 3%, 7%, 15% and 22%. The value of impulsive
noise is ±1 at random positions and 0 at other positions. The right column contains
restoration results according to different noise levels. As can be seen from Figure 1 the `1

fidelity is more stable for impulsive noise and always offer high quality restoration even
with poor data. In contrast to the `2 fidelity, the quality of restoration results by the `2

fidelity is always poor.

5.2. Comparison of Splitting with ADM-`2 and TNIP. in order to test the stability
of the splitting method for ill-conditioned problems, we use matrix An×n(n=200) whose
condition number is 255. This problem was discussed by Lorentz in [10] where the ill-
conditioned matrix is generated by Matlab code: ”A=tril(ones(200))”. The signal is
p-sparsity where p/n=0.1 and 0.2. We add 1% impulsive noise to data. As can be seen
from Fig.2, splitting converge obviously faster than the ADM-`1 method. The relative
error of splitting method is also better than ADM-`1 method. It is shown that splitting
method is stable even for large condition number matrices. Theoretically, ADM-`1 and
splitting method are adept to process impulsive noise. However, ADM-`1 method is
sensitive to noise when the operators are ill-conditioned. In this case, ADM-`1 cannot
obtain reasonable restoration. Splitting methods are more stable to noise level δ even if
matrix K has large condition numbers. Restoration results of the splitting method are
obviously better than the other two methods.

5.3. Image inpainting. We present the comparison results of splitting algorithm with
ADM algorithm by 2D image inpainting problems. The image is Lena(n=128; cf. Fig.3).
We remove eight vertical grids and eight horizontal grids pixels of Lena to create an
incomplete image. In this case, the image inpainting is a moderate ill-conditioned problem.
The condition number of the matrix is around 4000. For our purpose, we make use of
Daubechies 4 wavelet basis as a dictionary. We use four scales, for a total of 8192× 512
wavelet and scaling coefficients(cf.Fig.3). As seen from Fig.3, the representation of the
image with respect to Daubechies 4 basis is sparse. We add impulsive noise by Matlab
code ”imnoise(image, ’salt & pepper’, d)” . In the example, d = 0.02, the restoration
results are shown in Fig.3. In this case, the operator K is moderate ill-conditioned,
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performance of splitting is obviously better than ADM. Restoration results(PSNR) of ten
classical images in image processing by ADM and splitting methods are given in Table.1.
Restoration results show that if images have a sparse representation with respect to an
orthogonal basis, splitting method are competitive, which can obtain satisfactory results
even if the image inpainting are moderate ill-posed problems.

Table 1. Restoration results(PSNR) of ten images by ADM and splitting methods.

noise
level

Lena
ADM Splitting

Babara
ADM Splitting

boat
ADM Splitting

goldhill
ADM Splitting

cameraman
ADM Splitting

0.01 23.15 25.45 21.28 22.52 23.84 25.38 23.14 25.26 23.74 25.17
0.02 22.45 24.23 20.52 21.73 22.48 23.98 22.23 24.46 22.34 23.86
0.03 20.23 22.17 17.46 19.89 20.23 21.49 20.69 22.58 20.47 21.72

noise
level

peppers
ADM Splitting

mandrill
ADM Splitting

pirate
ADM Splitting

jetplane
ADM Splitting

lake
ADM Splitting

0.01 24.05 26.28 24.18 26.20 23.74 25.06 23.25 25.09 23.14 25.87
0.02 23.48 25.37 23.42 25.11 22.38 23.97 22.32 23.79 22.46 24.93
0.03 21.53 23.70 21.60 23.01 20.33 21.79 20.58 22.00 20.49 22.82

6. Conclusions. For `1+`1 problems, we have proposed a novel dual splitting method
method for sparsity regularization. This method transform `1+`1 problems to box con-
straint smooth functional which can be easily solved. the Numerical results indicate
that the proposed splitting algorithm performs competitively with several state-of-art
algorithms such as ADM method. We remark that for well-conditioned problems e.g.
compressive sensing, `1 fidelity is more accurate than `2 fidelity with impulsive noise. On
various classes of test problems with different condition numbers, the proposed splitting
method is more stable with respect to noise levels compared with ADM-`1 algorithm.
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Figure 1. Restorations of `1 and `2 fidelities with Impulsive noises
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Figure 2. Comparisons of Splitting method with ADM-`1 and TNIP
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Figure 3. Restoration of Lena with impulsive noise d=0.02


