
Journal of Information Hiding and Multimedia Signal Processing c©2018 ISSN 2073-4212

Ubiquitous International Volume 9, Number 2, March 2018

Symbiotic Organisms Search with Mixed Strategy

Yan-Jiao Wang, Huan-Huan Tao

College of Information Engineering
Northeast Electric Power University

No.169, Changchun Rd., Chuanying, 132012, Jilin, China
563274435@qq.com, taociguan@hotmail.com

Ning Lan

International School of Economics and Management,
Capital University of Economic and Business

No.121, Huaxiangzhangjia Rd., Fengtai, 100071, Beijing, China
308073146@qq.com

Xiao-Jie Li

Far East Holding Group Co., LTD
No.6, Yuandong Rd., Yixing, 214257, Jiangsu, China

635967767@qq.com

Received March, 2017; revised December, 2017

Abstract. Considering the drawbacks of slow convergence and the ease of falling into
a local optimum in Symbiotic Organisms Search (SOS), Symbiotic Organisms Search
with Mixed Strategy (ISOS) is proposed. In the first stage, to accelerate the speed of
population convergence, the variance of fitness value is used as the evaluation criterion
in the mutualism and commensalism phase. In the second stage, to avoid the prob-
lem of easily reaching local optimization state in the later period of evolution, a new
population-updating formula is introduced to replace the blindness of the random search
for the parasitic mechanism. This improvement increases the diversity of the population
to guarantee the search ability of the algorithm. Experimental results on eight benchmark
functions show that ISOS improves convergence and robustness compared to SOS, and
can avoid premature.
Keywords: Swarm intelligence; Symbiotic Organisms Search; Function optimization

1. Introduction. Symbiotic Organisms Search (SOS) is a new optimization algorithm
that simulates the interactive behavior seen among organisms in nature [1]. It is proposed
by Min-Yuan Cheng and Doddy Prayogo in 2014. Lots of experiments have proved that
SOS has the advantages of fast search speed and less parameter setting. Tests on standard
benchmark functions indicate that the performance of SOS is better than lots of algorithm,
such as Genetic Algorithm (GA) [2], Particle Swarm Optimization (PSO) [3], Differential
Evolution (DE) [4-5] and Bees Algorithm (BA) [6]. It is one of the most outstanding
function optimization algorithms. However, similar to other evolutionary algorithms,
the problem of slow convergence and easy falling into local optimum still remains [7-
9]. This recently developed algorithm has not been well-studied. For this reason, it has
not yet undergone significant performance improvement and extensive application, so the
theoretical system remains imperfect.
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To improve the performance of the SOS, Symbiotic Organisms Search with Mixed
Strategy (ISOS) is proposed. On the one hand, ISOS uses the variance of fitness value
as the criterion to realize the fusion of random update and adaptive update to speed
up the convergence. On the other hand, to improve the search ability of SOS, ISOS
introduces a new individual update formula in parasitism phase. Experimental results on
eight benchmark functions show that the ISOS is better, and the performance of the SOS
is improved.

2. Symbiotic Organisms Search(SOS) algorithm. SOS deals with function opti-
mization problems by simulating the symbiotic relationship between different organisms
in nature. SOS corresponds to three different symbiotic relationships in nature, the mu-
tualism phase, the commensalism phase and the parasitism phase. In the process of
simulating this characteristic, the solution of the optimization problem corresponds to
the individual, and the fitness function shows the adaptability of the organism to the
natural world.

2.1. Mutualism phase. Similar to legume and root nodules, SOS algorithm establishes
mutualism mechanism through simulating the interaction of these organisms that can
work together to benefit each other. According to the Eq. (1), the individual update is
carried out. {

Xinew = Xi + rand(0, 1) ∗ (Xbest−Mutual − V ector ∗BF1)

Xjnew = Xj + rand(0, 1) ∗ (Xbest−Mutual − V ector ∗BF1)
(1)

Mutual − V ector =
Xi +Xj

2
(2)

In SOS, Xi is an organism matched to the ith member of ecosystem. Another organism Xj

is then selected randomly from the ecosystem to interact with Xi. Xbest is representing
the highest degree of adaptation, and rand(0,1) is a vector of random numbers. Eq.
(2) shows a vector called “Mutural Vector” that represents the relationship characteristic
between Xi and Xj. Benefit factors(BF 1 and BF 2) are determined randomly as either 1
or 2,which shows two types of organisms benefit to each other.

2.2. Commensalism phase. Similar to remora fish and sharks, SOS algorithm estab-
lishes commensalism phase through simulating the interaction of these organisms that
benefit to one of the organisms and nothing to the other. According to the Eq. (3), the
individual update is carried out.

Xinew = Xi + rand(−1, 1) ∗ (Xbest −Xj) (3)

Xj is selected randomly from ecosystem to interact Xi. The part of formula, Xbest −Xj,
is reflecting as the beneficial advantage provided by Xj to help Xi increasing its survival
advantage in ecosystem to the highest degree in current organism. If the new individual’s
fitness value is better than the original one, then to update the original individual.

2.3. Parasitism phase. Similar to roundworms and humans, SOS establishes commen-
salism phase through simulating the interaction of these organisms that benefit to one of
the organisms and harm to the other.

Parasite Vector is created by duplicating organism Xi, then modifying the randomly
selected dimensions using a random number. To compare Parasite Vector and organism
Xi, the better one can be saved.
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3. Symbiotic Organisms Search with Mixed Strategy (ISOS). It is well known
that the individual update strategy of swarm intelligence optimization algorithm affects
the convergence speed and convergence precision directly [10,11]. In SOS, in order to
speed up the convergence rate, mutualism phase and commensalism phase are established.
In order to ensure the diversity of population, parasitism phase is established. A great
quantity studies demonstrated that SOS algorithm has slow convergence rate and it is
easily trapping in local optimum. The fundamental cause of the problem is the irrational
individual renewal strategy. So, this paper proposes two improved strategies for individual
renewal.

3.1. The improvement of mutualism and commensalism phase. We know from
Eqs (1) and (2) that the essence of the individual renewal formula in the mutualism
and commensalism phases is: New individual=original individual+ learning from optimal
individual*random weight. In this way, learning from the optimal individual introduces
better evolutionary information that can ensure that individuals move to a better location.
At the same time, random weights can maintain the diversity of the population. In the
latter part of the algorithm, because the degree of similarity of individuals is high, the
optimal individual is unable to provide more information than their own. This can cause
an enhancement of the function of the random weighting part, causing the search step
to become random. This updated mode causes the algorithm to run slowly at the later
stage, because it is difficult for individuals to explore more excellent new individuals by
random searching in their own vicinity. Thus, SOS has a slow convergence rate during the
posterior evolving process. Overall, the convergence speed of the SOS should be improved.

As can be seen from the above analysis, the difference between individuals is small, and
all of them converge to a global optimum solution in the posterior evolving process.

Therefore, this paper adopts the following measures. First, smaller search steps should
be taken to allow fine search in the local vicinity. Second, considering the influence
of the iteration on the search scope, the random weights can be changed into adaptive
weights. With more iterations, the random weight becomes smaller, and local search
can be changed into search in the vicinity of the best individual to increase the rate of
convergence. In summary, the new individual updating formula is introduced as Eqs (4)
and (5). However, the original strategy is partially preserved as Eqs (1) and (3) to avoid
individuals becoming almost the same as the result of convergence that is too fast. At
this point, the learning part from other individuals approaches 0. Many experiments have
shown that if too fast convergence is required during the anterior evolving process, the
algorithm can be easily trapped in local optima. Thus, this method only increases the
convergence of the algorithm during the anterior evolving process, and proceeds as far
as possible to ensure the diversity of population in the posterior evolving process. In
summary, this paper proposes a new fusion updating strategy in the posterior evolving
process. The pseudo-code of the mutualism phase is shown below.new Xinew = Xbest + (1-(

g

G
) ∧ 2) ∗ (Xbest −Mutual V ector(1, :) ∗BF1)

new Xjnew = Xbest + (1-(
g

G
) ∧ 2) ∗ (Xbest −Mutual V ector(1, :) ∗BF 2)

(4)

new Xinew = Xbest + (1− (
g

G
) ∧ 2) ∗ (Xbest −Xj) (5)

The pseudo-code of mutualism phase.
Eq. (1) is replaced by Eq. (3), and Eq. (4) is replaced by Eq. (5) in commensalism

phase, and the rest is the same.
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Input: The population(X) size is S X={X1, X2, . . . , XN};
Output: New populations(X ′)={X ′1,X ′2,. . . ,X ′N};
if s < q
if rand< r
Updating individuals according Eq. (4);
else
Updating individuals Xi , Xj according Eq. (1)
end
else
Updating individuals Xi , Xj according Eq. (1)
end
The new individuals’( X ′i, X

′
j) fitness values are calculated and compared. Indi-

viduals with poor fitness were eliminated

In the pseudo-code, the ‘s’ is the variance of individual fitness value that can be used
to measure individual differences to distinguish the anterior and posterior evolving pro-
cess. The ’r’ is a random number between 0 and 1 that allows the improved strategy to
increase the convergence rate to be selected with greater probability. At the same time
the original strategy of maintaining population diversity also has a certain probability of
being selected. This allows reaching convergence as quickly as possible without significant
reduction of the diversity of the population.

3.2. The improvement of parasitism phase. The parasitic mechanism of SOS selects
dimensions randomly, and searches randomly in the domain of its definition. Although
this approach can complement diversity to some extent, blind random search is likely to
destroy good individuals. It is difficult to update a more outstanding individual, and it is
difficult to maintain the diversity of the population. For unimodal functions the diversity
requirement is not high, and the convergence rate is slow but does not reach the local
optimum when it only relies on mutualism and commensalism to update the individuals.
For multimodal functions that the diversity requirement is high, and SOS will still fall into
a local optimal even with the parasitism phase. Therefore, not only does the population
need to increase diversity, but should increase the convergence rate. Based on this idea, a
new strategy of individual update in the parasitism phase is introduced, as shown in Eq.
(6).

new Xjnew = a ∗Xj + b ∗ (Xbest −Xj) + c ∗ (Xk −Xj) (6)

Of this, Xj, Xk and Xp are selected randomly from the population, and the selected
individuals are different. The new formula of individual renewal consists of two parts:
a∗Xjis a random changing part, and the b∗ (Xbest−Xj) and c∗ (Xk−Xj)are the learning
part. In learning, the first term indicates that the individual learns the best individual
near the optimal position, and the second term indicates that the individual learns from
the rest of the population to increase population diversity and to avoid the algorithm
reaching a local optimum. The ‘a’, ‘b’ and ‘c’ are control parameters, as shown in Eq.
(7).

a = amin+(amax−amin) ∗ ((1− (
g

G
) ∧ 2) ∗ w1+w2∗(f i−fmin)/(fmax−fmin));

b = bmin+(bmax−bmin) ∗ (((
g

G
) ∧ 2− 1) ∗ w1+w2∗(f i−fmin)/(fmax−fmin))

c = cmin+(cmax−cmin) ∗ ((1− (
g

G
)∧2) ∗ w1+w2∗(fmax−f i)/(fmax−fmin))

(7)
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Equation (13) is the result of learning from the individual to the others. The quality and
the front part of the multiplication result can be utilized to determine the proportion of
the overall learning; this can be regarded as the overall difference in front of the weight,
which has a certain algebraic relation with the fitness value. To efficiently algebraically
calculate the function, we developed the following linear formula.

The range of values of ‘a’, ‘b’ and ‘c’ is from 0 to 1. ’G’ reflects the maximum number
of iterations and ‘g’ reflects the current iteration. The ‘fi’ reflects ith individuals’ fitness.
The ‘fmin’ and ‘fmax’ represent the minimum fitness and the maximum fitness in the
current iterations. The ‘w1’equals 1

2
and ‘w2’ equals 1

2
. We can see from the formulas

that the parameters in the adaptive adjustment of SOS take into account the number of
iterations as well as the fitness value. This setting does not require human intervention.

4. Experiments and Results. Laboratory experiments were conducted in order to
determine the efficiency of the proposed evolutionary algorithm ISOS. All experiments
were performed on an Intel (R) Core (TM) CPU 1.80GHz i5-3337U, 4G memory computer,
with the Matlab 7.11software running environment.

4.1. Benchmark functions. We used a test bed of 8 benchmark functions (Table 1),
most of which were taken from the list of CEC2005 benchmarks, to evaluate the perfor-
mance of ISOS [12]. The theoretical minimum value of f5 is -29.6309, and the minimum
value of the other functions is 0.Functions f5, f6 and f8 are multimodal functions that
are typically used to test the global searching performance and the ability to avoid lo-
cal optimum [13]. The other functions are unimodal functions that are used to test the
performance of convergence speed and precision.

Table 1. Test Function

Function Formulation Range

f1 F1 (X) =
D∑
i=1

x2i [−100, 100]

f2 f(x) =
D∑
i=1

ixi2 [−10, 10]

f3 f(x) =
D∑
i=1

|xi|+
D∏
i=1

|xi| [−10, 10]

f4 f(x) =
D∑
i=1

(
i∑

j=1

xj)
2

[−100, 100]

f5 f(x) = −
D∑
i=1

sin(xi)(sin(ixi2/π))20 [0, π]

f6 f(x) =
D−1∑
i=1

100(xi+1 − x2i )2 + (xi − 1)2 [−30, 30]

f7 f(x) = (x1 − 1)2 +
D∑
i=2

i(2x2i − xi − 1)2 [−10, 10]

f8 f (x) =
D∑
i=1

(xi−100)2
4000

−
D∏
i=1

cos
(

xi−100√
i

)
+ 1 [−600, 600]

4.2. Performance test of two kinds of improvement. In this study, only one uni-
modal function, f1, was selected to verify the improvement of mutualism phase and com-
mensalism phase and only one multimodal function, f8, was selected to verify the improve-
ment of parasitism phase due to limitations of space. The population size is 50, and the
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dimension is 30. The maximum evaluation number of the benchmark function is 150,000.
The experimental results are shown in Fig 1.
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Figure 1. Comparison of the Improvement

Table 2. The Result of Test Function

Name Algorithm Minimum Mean Maximum Variance

f1

DE 3.55e-045 3.62e-044 1.06e-043 6.57e-088
SOS 1.62e-184 4.23e-176 6.53e-175 0
ISOS 0 0 0 0

f2

DE 6.17e-045 4.51e-044 2.14e-043 1.74e-087
SOS 4.322e-184 3.48e-176 7.28e-175 0
ISOS 0 0 0 0

f3

DE 1.75e-026 5.792e-026 1.24e-025 8.62e-052
SOS 9.52e-090 3.13e-087 3.74e-086 7.2285e-087
ISOS 0 0 0 0

f4

DE 2.69e-045 3.96e-044 1.92e-043 1.54e-087
SOS 8.12e-183 2.31e-175 3.31e-174 0
ISOS 0 0 0 0

f5

DE -7.2493 -5.1471 -1.8231 1.4180
SOS -9.8293 -9.6983 -9.3850 1.1912e-01
ISOS -18.6871 -18.4215 -18.0163 1.0674e-01

f6

DE 19.1454 22.4776 24.0148 1.7308
SOS 9. 901e-001 9.901e-001 9.901e-001 0
ISOS 1.62e-004 5.83e-004 9.41e-004 2.5e-004

f7

DE 6.1058 17.2493 26.4788 38.1277
SOS 4.06e-022 4.50e-018 1.24e-014 2.25e-018
ISOS 6.73e-033 2.89e-029 3.47e-025 7.44e-029

f8

DE 0 0 0 0
SOS 1.1102e-016 2.36e-002 1.102e-001 2.57e-002
ISOS 0 4.03E-004 7.403e-004 3.99E-003
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4.3. Test of the performance of ISOS. The research results of the related improved
algorithms have not been published, so we only compared ISOS with SOS and DE for
convergence rate and convergence accuracy.

4.3.1. Analysis of convergence accuracy of ISOS. To ensure fair comparison, the same
population size, the same dimension and the same termination criterion in each run are
used. Each function was run 30 times independently. The performance of ISOS was
investigated by the maximum, minimum, mean and variance of the test results. The
related data are shown in Table 2.

As shown in Table 2, at the same evaluation number, the optimal value of ISOS was
better than SOS for all the test functions. In addition to function 8, the SOS is superior
to the DE on the rest of the functions. Although the performance of ISOS in function 8 is
not as good as DE, it is better than SOS. The f1, f2, f3, f4, and f8 values converge to the
theoretical optimal value. Although the average of the f8 function is not ideal, the optimal
value was found 21 times in 30 replicates. ISOS was significantly improved compared with
SOS model. Additionally, compared with SOS, ISOS exhibits smaller variance, indicating
that the ISOS algorithm is more stable.

4.3.2. Analysis of convergence accuracy of ISOS. To compare the convergence speed of
the two algorithms, we set the function evaluation times to 20000, 40000, 60000, 80000,
and 100000. The population size is 50, and the dimension is 30. Each function is run 30
times independently. The related data are shown in Table 3.

It can be seen from Table 3 that ISOS has better convergence accuracy than SOS on all
benchmark functions under the same evaluation times of function, which indicates that
the convergence rate of ISOS algorithm is improved.

In summary, compared with ISOS and SOS, the convergence rate and convergence
accuracy are significantly improved, indicating that the two improvements are effective,
for a balance of the exploration and development capabilities of the algorithm.

5. Conclusions. In this paper, Symbiotic Organisms Search with Mixed Strategy is
proposed. A mixed population regeneration strategy is introduced in the mutualism and
commensalism phase, and a new population-updating formula is introduced to replace
the blindness of the random search for the parasitic mechanism in the parasitism phase.
The former speeds up the convergence rate of the population, and the latter increases
the diversity of the population and avoids the local optimization. Experimental results
on eight benchmark functions show that the ISOS improves convergence and robustness
compared to the SOS, and can avoid premature to an extent.
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