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Abstract. Blind image steganalysis (BIS) is the process of detecting whether an in-
put image has hidden data or not, without any prior known information ( i.e., blind) on
the applied steganography technique. Recent BIS approaches typically suffer from limited
detection accuracy and higher computational cost due to, e.g., pre-processing. In this
paper, the proposed BIS approach discards the pre-processing step, so that the computa-
tional cost is reduced. As well, significant modifications on a recent convolution neural
network (CNN)-model are considered in order to enhance the detection accuracy. First,
an efficient parameters initialization is considered. Second, a cyclic learning rate and
the LReLU activation function are used, during the learning phase, for faster conver-
gence with noticeably higher detection accuracy. Finally, a hybrid technique of model
and data parallelism techniques is performed in both convolution and fully connected lay-
ers, respectively, thus significantly reducing the computational cost. Given stego-images
exposed to the S-UNIWARD, WOW and HILL steganography techniques with different
payloads, the results show that the proposed approach outperforms competing approaches
by an enhancement of up to 13.3% and 21.2X in terms of detection accuracy and speed-
up factor, respectively.
Keywords: Image steganalysis, Deep learning, Data & model parallelism, GPUs.

1. Introduction. Despite the remarkable success achieved in steganography techniques,
there is an urgent need to eliminate its negative use of by the process of steganalysis. This
latter detects the existence of any hidden data (i.e., secret data) or even more to extract
these data. The multimedia cover in which steganographers can hide data may be text,
image, audio or video [1]. This paper is concerned with images as their cover due to their
prevalence and widespread use on the Internet, especially on social media.

Blind image steganalysis attempts to distinguish the presence of a shrouded message
in a digital image without any prior information on the steganographic technique used
[2]. The main challenge in image steganalysis is to extract the stego-noise [3]. CNNs
can be used in the image steganalysis issue due to its adaptive ability to detect the
modern steganography techniques. Generally, traditional CNN-based image steganalysis
approaches yield reasonable detection accuracy for high-payloaded stego-images, however,
the detection accuracy is negatively impacted in case of detecting stego-images with low
payload. In such cases, the CNN model used requires two levels of training, thus increas-
ing the training time needed. Moreover, other factors would affect the detection accuracy,
such as the pre-processing, feature extraction and classification phases. Typically, a high
pass filter (HPF) with fixed coefficients is used as a pre-processing phase. However, that
filtering would increase the computational cost, the fixed filter coefficients are not neces-
sarily to match all input stego-images, thus decreasing the detection accuracy. In addition,
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the current BIS approaches use their CNN model with non-initialized parameters, fixed
learning rate, and Gaussian activation function during the learning phase, thus negatively
affecting the detection accuracy. Nevertheless, most of the modern BIS approaches use
either data parallelism or model parallelism during the learning phase, thereby the ad-
vantages of one of them is discarded. Generally speaking, the recent CNN-based BIS
approaches present a limited enhancement in the detection accuracy with a noticeable
increase in the training time.

This paper goal is to produce a highly accurate blind image steganalysis technique
based on the well-known image steganalysis technique IGNCNN [4] with set of major
modifications in order to efficiently detect stego-images that may contain harmful hidden
data. In this paper, the proposed BIS approach omits the pre-processing step, thus de-
creasing the computational cost and initialize the first convolutional layer with a set of
high pass filters that help enhancing the stego-noise extraction process. In addition, sig-
nificant modifications, on the CNN-model of the most recent BIS approaches, are carried
out in order to enhance the detection accuracy. First modification is to use an efficient
parameters initialization. Second, during the learning phase, a cyclic learning rate and
the LReLU activation function are used for faster convergence with noticeably higher de-
tection accuracy. Finally, a hybrid parallelism technique is performed using both model
and data parallelism techniques in both convolution and the fully connected layers, re-
spectively, thereby the detection accuracy is significantly enhanced and the training time
is reduced.

The rest of this paper is organized as follows. The related work to the CNN-based
image steganalysis approaches and a focus on the most recent one, namely QianNet [5],
are presented in Sec. 2 and Sec. 3, respectively. Then, the proposed approach and its
implementation on two graphical processing units (GPUs) are explained Sec. 4 and Sec. 5,
respectively. Experiments and results are shown in Sec. 6. Finally, conclusions are drawn
in Sec. 7.

2. The Related Work and Problem Statement. Blind image Steganalysis is defined
as the process of detecting whether an image contains secret information (binary classifi-
cation problem). This problem can be divided into two main steps: i) extracting features
and ii) classifier training. Traditional image steganalysis approaches, such as Spatial Rich
Models (SRM) [6, 7] perform the feature extraction step using handcrafted feature extrac-
tors. These extractors are very difficult to be designed, particularly with the rapid increase
in the complexity of steganographic techniques. Traditional steganalysis approaches use
classifiers, such as Fisher Linear Discriminant (FLD)-based ensemble classifier and the
support vector machine (SVM) [7] to perform the second step. The separation between
the two steps in these approaches makes the simultaneous optimization for the two steps
impossible.

CNN-based steganalysis approaches are proposed to avoid the disadvantages of tra-
ditional steganalysis ones [8]. These approaches can automatically extract features from
input images. Classification and feature extraction are unified under a single model which
makes it possible to optimize both classification and feature extraction steps simultane-
ously. CNN-based steganalysis approaches present comparable results with the traditional
approaches. In [8], a blind CNN-based image steganalysis approach is firstly presented.
Although that approach’s detection accuracy reaches comparable results to that of [6],
the former outperforms the results in SPAM [9]. The CNN in [8] consists of nine convo-
lutional layers and one fully connected layer. Max Pooling is used as a pooling layer and
Softmax is used for classification module. No pre-processing layer is implemented. No
batch normalization nor absolute layer is used.
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Gaussian Neuron CNN (GNCNN) [10] is the first CNN-based approach with results
comparable to SRM results. In order to strengthen the noise signal, a HPF is used. That
CNN consists of five convolutional layers and three fully connected layers. It also uses
a Gaussian function as an activation layer. GNCNN [10] consists of one pre-processing
layer, five convolutional layers and three fully connected layers. Average Pooling is used
as pooling layer, a Gaussian activation function is used in the hidden layers and Softmax
is used for classification module. No batch normalization or absolute layer are used.

Based on the GNCNN [10], authors in [11] present a CNN-based image steganalysis
approach but with different structure. This network has only two higher convolutional
layers. The Gaussian activation layer is also replaced by ReLU function [12]. The pool-
ing layers are not used. The training of this network is performed under two scenarios
Clairvoyant and Cover-Source Mismatch [11]. The results of this network outperform the
results of SRM.

Authors in [13] present a CNN-based steganalysis approach called XuNet. XuNet [13]
consists of one pre-processing layer, five convolutional layers and two fully connected
layers. Average pooling is used as a pooling layer, Tanh [14] and ReLU [12] activation
functions are used in the hidden layers, and Softmax is used for classification module.
Batch normalization is used, and an absolute layer exists after the first convolutional
layer. The approach in [13] enhances the statistical modeling by using an ABS layer and
1 × 1 convolution kernels. This approach also uses batch normalization layer in order to
prevent the network stuck in a poor minima and enhance the updating process of the
biases parameters. That approach uses two activation functions, the Tanh [14] function
in the first two layers and the ReLU [12] in the remaining layers, in order to avoid the
over-fitting problem. In [15], authors present an CNN-based approach to enhance the
accuracy and precision of the classification operation and recoup the lost information.
That improvement has been achieved due to using pooling operation by training a group
of CNNs with a similar structure to that in XuNet, but with little modifications. These
modifications are to increase the kernel size of the last two pooling layers and increase
the number of convolutional layers by one.

In [4] and our earlier work [16, 17, 18], transfer learning is used to enhance the per-
formance of GNCNN. Their results show that transferring pre-trained CNN features for
detecting high payload stego-images of one steganographic algorithm can improve fea-
ture learning for detecting lower payload stego-images of that specific steganographic
algorithm; named Improved Gaussian Neuron CNN (IGNCNN). In [19], authors improve
CNN-based steganalysis detection accuracy by using the trained CNN to calculate image
statistical model derivatives with respect to changes presented due to payload embedding.

To improve the detection accuracy of stego-images with low payload, [20] concludes that
the larger the filter size exposed to the final convolutional layer of a CNN, as well as the
less the filter size exposed to the remaining layers, the detection accuracy of stego-images,
with large image size and lower payloads, will be accordingly enhanced. In [21], two CNNs
are presented; the first is called generator, whereas the second is named discriminator.
The generator CNN is a steganography CNN that hides information in specific locations
that steganalyzers can not easily detect. While the discriminator CNN is trained on those
locations to enhance the detection accuracy metric.

YeNet CNN-based steganalysis approach is introduced in [22]. YeNet uses a set of
trainable HPFs instead of using the traditional ones for noise extraction process. Those
trainable filters are initialized with the coefficients of SRM filters. The TLU activation
layer is presented for first time in steganalysis to increase the signal-to-noise ratio (SNR).
Yedroudj-Net, an image steganalysis approach presented in [23], is a combination between
XuNet and YeNet. It uses the TLU activation function [22] and batch normalization
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Figure 1. QianNet CNN structure [5].

layer. It also uses the SRM filter for initializing the values of the first convolutional layer.
Simply it uses all the best configurations in XuNet and YeNet. YedroudjNet [23] network
structure is presented as: 1 convolutional layer with 30 filters as a pre-processing layer, 5
convolutional layers as feature extractors and 3 fully connected layers. Average Pooling is
used after all convolutional layers except for the first one. It uses two activation functions
in the hidden layers which are TLU [22] and ReLU [12], and Softmax for classification.
It also uses batch normalization and an absolute layer exists after the first convolutional
layer. Authors in [24] update the YeNet to effectively detect steganography in images
with high- resolution. The CNN is trained on small resolution images in order to adopt
the network to high resolution ones. Another CNN model for steganalysis called ZhuNet
is presented in [25]. ZhuNet optimizes the parameters of the pre-processing layer for the
first time.The size of convolution kernel is reduced. In order to capture more relative
features separable convolutions [26] are used. Spatial pyramid pooling (SPP) [27] is used
to enhance the rendering of features and adopt the network to small images. In [5],
QianNet is presented as a protraction of the work in [10] and [4]. This approach aims to
enhance the extraction of the stego-noise which is a must in order to improve the detection
accuracy. This enhancement is achieved by investigating the effect of using 3 different HPF
from the set of filters used in SRM [6] (see 1). In order to boost the detection accuracy
of the QianNet [5] model combination is used. Despite the enhancement achieved by this
approach as well as aforementioned ones, the QianNet still has some challenges to enhance
the detection accuracy with an enhanced training time, such as

• Using a HPF with fixed coefficients, especially for low payload stego-images.
• Using fixed learning rate, which may cause training process stuck in local minima.
• Using both Gaussian activation function that yields increasing the training time, and

ReLU activation function that neglects the negative part of the feature maps.
• Using single GPU implementation that imposes either CNN data parallelism or CNN

model parallelism, thus discarding the benefit of either of them.

3. QianNet CNN-Structure: An Overview. In this section, we focus on
showing the structure of the QianNet [5] model. Basically, it includes a pre-processing
layer to extract the stego-noise the output of this layer is fed as an input to the feature
extraction module. This module consists of five convolutional layers, each of them contains
16 neurons. The extracted features are used as an input to the classification module which
is consisted of two fully connected layers each has 128 neurons and one softmax layer for
the classification decision. QianNet [5] CNN structure is shown in 1.

3.1. The pre-processing Layer. This layer is a HPF that extracts stego-noise from the
stego-image. QianNet [5] train different CNNs having the same structure, however, with
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different HPFs as a pre-processing layer. These filters are four different filters elected out
of the SRM [6] feature extractor filters. Those filters are K5×5, K3×2, K1×4 and Kmax

5×5 .

3.2. Model Combination. Once the training of each CNN has completed, the CNN
model with the lowest detection error is elected. Then, that model is added to other
models that use different HPFs to greedily minimize the error generated per iteration.

3.3. Activation Function. QianNet [5] investigates four types of activation functions
which are Gaussian, 1-Gaussian, ReLU, and Tanh. The lowest detection error is achieved
when using Gaussian and ReLU activation functions respectively. However, the Gaussian
activation function is the most complex activation function, thus leads to a noticeable
increase in the training time. On the other hand, in despite of that the ReLU activation
function is simpler and saves the training time, it has a negative effect by losing some
data due to neglecting the negative parts of the feature maps.

4. The Proposed CNN-based Steganalysis Approach. In this section, the proposed
approach is explained. This approach tackles the challenges of detection accuracy and
training time of QianNet [5] in order to produce a highly accurate CNN-based image
steganalysis approach with an accelerated training time.

Figure 2. The proposed CNN model.

4.1. The Architecture of the Proposed CNN Model. The proposed model con-
sists of two main modules: features extraction module and classification module. A
pre-processing layer, for extracting stego-noise residuals, is embedded at the beginning of
the features extraction module.

• Features Extraction Module consists of seven convolutional layers C0 - C6. Each
of these layers consists of 16 neuron. The first layer C0 acts as the required pre-
processing layer for extracting stego-noise residuals. The convolutional kernel in the
C0, C1 and C6 is of size 5 × 5 and of size 3 × 3 in the rest. Avg pooling layer of
window size 3× 3 and stride 2 is applied after all convolutional layers except for the
first two layers ,i.e., , C0 and C1. All convolutional layers are followed by a LReLU
activation function except for the first two layers, C0 and C1, which are followed by
TLU activation function. As in XuNet [13] and YedroudjNet [23], an Absolute Layer
(ABS) is placed after the first feature extraction layer (C1). ABS layer imposes the
generated features to consider the sign symmetry, which may exist in the stego-noise.
This layer is very effective in preventing the network from being stuck in a poor local
minima and learning optimal biases. The Batch Normalization layer (BN) is used
after the ABS layer as in XuNet [13], due to its ability to normalize the feature maps
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to a unit variance and a zero mean. This layer is also used to help the CNN to
increase its insensitivity to parameter initialization and to faster convergence, which
can be happened by compelling the input data from being in saturation regions [28].
In the proposed model the input image is converted into 256D feature vector by
convolutional and pooling layers. The proposed network structure is shown in Fig.2.

• Classification module: This module consists of three fully connected layers: F1, F2
and F3. Layers F1 and F2 contain 128 ReLU [12] activated neurons, and F3 have 2
neurons with a two-way Softmax for classification.

4.2. Efficient pre-processing Initialization. In the proposed approach, instead of
using a pre-processing layer, a special convolutional layer C0 is used. The parameters
of this layer are not randomly initialized, instead, they are initialized with the basic
high-pass filters used in computation of residual maps in SRM [6]. By using this special
initialized parameters, the layer extracts the stego-noise residuals as the SRM [6], just
for the first image. Then, these parameters are fine tuned every back-propagation pass,
i.e., these parameters are adopted depending on the input images in order to effectively
extract the stego-noise. This way for extracting the stego-noise is dataset dependant as
the weights are updated based on the calculated error from directly the input images.

SRM filters are 30 filters divided into 6 classes: 1st, 2nd, 3rd, SQUARE, EDGE 3 × 3
and EDGE 5 × 5. These filters are distributed as follows: 8 filters in class 1st, 4 filters
in class 2nd, 8 filters in class 3rd, 4 filters in class EDGE 3 × 3, 4 filters in class EDGE
5 × 5 and 1 filter in class SQUARE 3 × 3 and another 1 filter in class SQUARE 5 × 5.
The maximum kernel size is 5 × 5.

4.3. Implemented Activation Functions. In the proposed CNN-based model, two ac-
tivation functions, LReLU and TLU, are implemented [29]. LReLU activation function is
a modified version of ReLU activation function, which effectively can select useful signal
from input images i.e. extract sparse feature representations. These spares representa-
tions are linearly separable and have better generalization ability [29]. However, LReLU
activation function has a small slope in the negative area, so can avoid negative data loss,
which can be occured with implementation of ReLU. Using TLU activation function in
the first convolution layers allows to perfectly deal with the dispersion of stego-noise, and
hence the CNN can be learned effectively with HPFs in the first layer [29].

LReLU and TLU are characterized by the lowest complexity when compared to other
nonlinear activation functions, e.g., the Gaussian activation function. So, applying both
LReLU and TLU activation functions instead of the Gaussian one, in the proposed ap-
proach, is suggested to accelerate the training process.

4.4. CNN Learning Rate. The learning rate is considered as one of the important
hyper-parameters to be tuned for training deep neural networks. A stochastic gradient
descent optimizer is typically used to update the weights in the training process. Weights
are updated as, θt = θt−1 − εt

∂L
∂θ

, where θ denotes weights, L denotes a loss function and
εt denotes learning rate. Low learning rate justifies a reliable training, but on the other
side, the optimization process consumes much time to reach minimum of the loss function.
In case of a high learning rate, the training may neither converge nor diverge. So, the
optimizer may miss the minimum and make the loss worse.

In the proposed approach, a method [30] for detecting the range of learning rates,
is implemented. In the implemented method, the learning rate range, minLR through
maxLR, is selected by such a way , in which the loss decreases fast. In the defined learning
rate interval, high learning rate may lead the system to traverse the saddle points faster
and hence negatively affect the minimizing process [31]. On the other side, applying tiny
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gradients of these points decelerates the learning process. So, in the proposed CNN-
based model the cyclical learning rate method is applied. In that cyclical version, the
learning rate is started with a relatively high value, then it will be decreased gradually
to tiny values when approaches the required optimal value. By applying cyclic learning
rate method, a near optimal learning rate can be selected and implemented during the
training process of the proposed approach [30].

5. Implementing The Proposed CNN-Based Steganalysis Approach with Model
Parallelism & Data Parallelism on GPUs. In the proposed CNN-based approach,
both model parallelism and data parallelism are applied in training process on GPUs in
accordance with a variable batch size.

5.1. Model Parallelism and Data Parallelism. CNN-based image steganalysis ap-
proaches are models, which consist of multiple layers of multiple neurons, i,e, big model.
These models are trained on large number of images, i.e, large dataset. Based on that,
two parallelization methods can be used for parallelizing training process of such CNN
models: i) model parallelism and ii) data parallelism.

• In model parallelism, the CNN model can be divided into different parts. Each part
is trained on different GPU, that accelerates the training process. Generally, Model
parallelism is effectively used when tasks assigned to a neuron are very large.

• In data parallelism, the full model is assigned to each of the used GPUs to allow each
GPU to train the model on a different set of training data. Like model parallelism,
data parallelism accelerates the training process. Data parallelism is effectively used
when the computation process per network parameter is heavy.

In model parallelism, the workflows of the process on multiple GPUs, are dependent,
in which each GPU requires output from the others. Accordingly, all the GPUs should be
synchronized. In contrast, in data parallelism, the model parameters must be synchronized
for all GPUs to train a consistent model.

The proposed CNN contains two types of layers: convolutional and fully connected
layers. Most of computations (about 90-95%) are performed in convolutional layers, while
fully-connected ones are those layers in which the neuron activity (parameters) is high
(about 95%) [32]. Based on that, in the proposed CNN-based steganalysis approach, data
parallelism can be effectively applied in the convolutional layers and model parallelism is
more effective in the fully connected layers.

5.2. Variable Batch Size. Batch size affects the efficiency of data parallelism, in which,
CNN parameters have to be synchronized to verify model consistency. Applying large
batch size decreases the number of times required for synchronizing parameters (synchro-
nization once per batch). On the other side, large batch size may negatively affect the
detection accuracy and the convergence rate of the Stochastic Gradient Descent (SGD)
of the training process. In the proposed CNN-based model, a batch of size 128 is ap-
plied in the fully-connected layers and of size 128 ×G for convolutional layers, where G
is number of used GPUs. This variable batch size provides model capability to update
the parameters of the fully-connected layers after each partial backward pass, with no
extra computational cost. Additionally, The variable batch size, which is relatively large
in convolutional layers, increases the efficiency of data parallelism.

5.3. Training Workflow for The Proposed CNN-Based Steganalysis Approach.
The proposed CNN-based image steganalysis approach is trained in parallelized form
using two GPUs, in which model parallelism and data parallelism are applied to the fully
connected layers and convolutional layers, respectively. A batch of size 128 is applied in the
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Figure 3. Illustration of the forward and backward propagation of the
proposed approach using two GPUs. The standard two passes are replaced
here with six passes (a, b, c, d, e and f).

fully connected layers and of size 256 in the convolutional layers. First, two batches of size
128 are passed to each GPU in order to perform feature extraction in the convolutional
layers. Then, the first GPU passes its features map to the second GPU. Both GPUs
perform the classification step based on the model parallelism. After error calculating for
the first batch, partial backpropagation is performed in order to update the parameters of
the fully-connected layers. At the end of partial backpropagation in the fully-connected
layers, the second GPU passes its features map to the first and the whole process is carried
out repeatedly. Finally, the backpropagation is performed to the convolutional layers and
the CNN model is then ready to be trained on the next upcoming batches as shown Fig3.

6. Experimental Work and Results.

6.1. Implementation Setup. Experimental tests are performed on a device with two
Intel Xeon Silver, 128 GB RAM and two Tesla V100 GPUs each with 5120 CUDA cores.
A batch of size 256 and 128 for convolutional and fully-connected layers respectively are
applied with a momentum of value 0.9. Weight decay is 0 for convolutional layers and 0.01
for the fully connected layers. Maximum learning rate MaxLR, in the effective learning
rate range, equals 0.01 for training the CNN on S-UNIWARD stego-images and 0.001 for
training the CNN on WOW and HILL stego-images, while minimum learning rate MinLR
equals 0.00001. Synchronization process between the GPUs is achieved using the built in
SYNC-FUNCTION implemented in CUDA-convnet2.

In the experiments, the detection error (PE) is used as the performance evaluation
metric on the basis of the lower, the better. PE is computed as shown in 1, where PFA
denotes the false alarm rate, determined as shown in Eq. 2. As well, FP and TN denote
the false positive and the true negative, respectively. While PMD denotes the missed
detection rate that can be formulated as shown in Eq. 3. Also, PD denotes the detection
rate and can be cast as shown in Eq. 4. Finally, TP and FN denote the true positive and
the false negative, respectively.

PE = minPFA
0.5(PFA + PMD(PFA)) (1)

PFA = FP/(FP + TN) (2)

PMD = 1 − PD (3)

PD = TP/(TP + FN) (4)
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The experimental results of the proposed CNN-based steganalysis approach will be
compared with those of a set of eight recent competing steganalysis approaches: SRM
with the Ensample classifier (SRM+EC) [7], GNCNN [10], IGNCNN [4], XuNet [13],
YeNet [22], QianNet [5], YedroudjNet [23] and ZhuNet [25].

6.2. Dataset Description. In order to evaluate the performance of the proposed ap-
proach, two datasets are used. The first is the standard BOSSbase 1.01 image dataset [33]
and is used for verification. BOSSbase 1.01 contains 10000 gray-level cover images of size
512 × 512, those images are acquired by seven cameras. All the BOSSbase 1.01 images
are resized to 256 × 256 pixels using Matlab. Whereas, the second dataset is ImageNet
[34], a data set of over 15 million high-resolution images collected from the web. 100,000
images are selected randomly, then converted them to 8-bit grayscale, and finally cropped
out the central 256 × 256 from the resulting images. The second image dataset is used
for validation without training (i.e., testing only).

For the BOSSbase 1.01 dataset [33], experiments are applied on the most recent stegano-
graphic techniques: WOW [35], S-UNIWARD [36] and HILL [37], with embedding rates
of 0.1, 0.2, 0.3 and 0.4 bpp (i.e., bits per pixel) for WOW and HILL and rates of 0.2, 0.3,
0.4 and 0.5 bpp for the S-UNIWARD. whereas, for ImageNet dataset, experiments are
applied on WOW [35] and S-UNIWARD [36], with embedding rates of 0.3 and 0.4 bpp.
In all experiments, each dataset is split into 70% for training phase, 10% for validation
phase, and 20% for testing phase.

6.3. Results and Discussion.

6.3.1. Results of the Competing Approaches w.r.t. Detection Error. In the experiments,
the proposed approach is trained and tested using the BOSSbase 1.01 stego-images af-
fected by S-UNIWARD steganography algorithm of payloads 0.5, 0.4, 0.3 and 0.2 bpp. The
resulting detection errors are reported in Table 1. Then, all competing approaches have
been tested by the ImageNet stego-images that are exposed to S-UNIWARD steganogra-
phy algorithm with payloads 0.4 and 0.3 bpp (i.e., see Table 1).

Similarly, all competing approaches are trained and tested using the BOSSbase stego-
images that are affected by both WOW and HILL steganography algorithms with pay-
loads 0.5, 0.4, 0.3 and 0.2 bpp. The detection errors are shown in Table 2 and Table 3,
respectively. Then, it is only tested using the ImageNet stego-images that are exposed to
both WOW and HILL steganography algorithms with payloads 0.4 and 0.3 bpp (i.e., see
Table 2 and Table 3, respectively).

According to the results listed in Tables 1, 2, and 3, it can be noticed that:

• The proposed CNN-based BIS approach outperforms all competing approaches when
detecting the S-UNIWARD stego-images with payloads 0.5, 0.4, 0.3 and 0.2 bpp. The
proposed approach also outperforms all competing approaches when detecting WOW
and HILL stego-images with payloads 0.4, 0.3, 0.2 and 0.1 bpp.

• In the proposed approach, the pre-processing layer has been removed. Instead, a
convolutional layer has been added at the beginning of the model. Therefore, the
extraction of the stego-noise is improved, thus enhancing the detection accuracy.

• Applying multiple types of activation functions, with respect to the role of each layer
and extracted feature maps, has a significant impact on enhancing the accuracy.

• Despite the fact that the depth of the proposed CNN model is lower than that of all
competing models, such as YedroudjNet [23] and ZhuNet [25], the proposed CNN
model can effectively extract suitable feature maps for image steganalysis issue.

It can be shown that the proposed approach surpasses the competing ones using both
image datasets that have been used for verification and validation purposes.
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Table 1. Detection error of the S-UNIWARD stego-images with different
payloads using the BOSSbase [33] dataset for verification, and the ImageNet
[34] for validation (i.e., testing only); on the basis of the lower, the better.

Dataset BOSSbase [33] ImageNet [34]
Payload 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp 0.3 bpp 0.4 bpp
SRM+EC [7] 32.10 24.95 20.55 16.64 37.70 34.41
GNCNN [10] 37.43 30.62 20.08 17.33 38.52 34.67
IGNCNN [4] 34.38 28.42 22.05 19.32 36.77 33.39
XuNet [13] 39.10 32.84 27.21 18.15 35.18 32.72
YeNet [22] 40.01 35.28 31.21 16.62 33.56 29.63
QianNet [5] 29.42 23.80 17.78 13.96 32.79 27.81
YedroudjNet [23] 36.72 29.61 22.81 18.27 28.31 23.79
ZhuNet [25] 28.59 19.74 15.32 9.56 26.57 22.73
Proposed 26.72 17.91 13.47 7.94 19.86 16.22

Table 2. Detection error of the WOW stego-images with different payloads
using the BOSSbase [33] dataset for verification, and the ImageNet [34] for
validation (i.e., testing only); on the basis of the lower, the better.

Dataset BOSSbase [33] ImageNet [34]
Payload 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp 0.3 bpp 0.4 bpp
SRM+EC [7] 40.25 32.10 24.92 20.67 38.21 34.70
GNCNN [10] 50.02 37.47 27.88 20.28 37.37 34.11
IGNCNN [4] 43.93 34.38 24.87 19.62 35.63 33.83
XuNet [13] 33.60 31.65 20.71 18.15 34.02 31.29
YeNet [22] 32.45 24.35 20.36 17.07 33.15 30.50
QianNet [5] 32.61 26.78 19.69 15.07 32.61 29.43
YedroudjNet [23] 32.15 27.83 19.46 14.18 26.32 24.71
ZhuNet [25] 31.84 23.31 17.11 11.82 24.13 22.94
Proposed 27.03 20.54 15.81 9.65 20.08 15.38

Table 3. Detection error of the HILL stego-images with different payloads
using the BOSSbase [33] dataset for verification, and the ImageNet [34] for
validation (i.e., testing only); on the basis of the lower, the better.

Dataset BOSSbase [33] ImageNet [34]
Payload 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp 0.3 bpp 0.4 bpp
SRM+EC [7] 48.49 46.29 43.16 41.46 39.87 37.12
XuNet [13] 41.56 37.60 30.12 20.67 36.51 35.98
YeNet [22] 44.30 39.41 34.92 32.45 33.28 32.27
QianNet [5] 39.78 36.82 25.11 19.60 32.74 31.42
YedroudjNet [23] 40.86 35.66 28.64 23.19 30.61 29.85
ZhuNet [25] 32.29 29.87 23.31 16.83 28.32 26.72
Proposed 30.09 26.55 20.84 13.92 25.91 20.13

6.3.2. Results of the Competing Approaches w.r.t. the Training Time. The experimental
results of proposed CNN-based approach are compared with results of IGNCNN [4], XuNet
[13], YeNet [22], QianNet [5], YedroudjNet [23] and ZhuNet [25] in terms of training time
and count of applied learning parameters during the training process, which reflects the
complexity of the network used. The training time and the counts of training parameters
of the competing approaches are presented in Table 4. Results in Table 4 show that the
training time required using the proposed approach is significantly decreases compared to
competing ones due to the following reasons:

• The implementation of the proposed approach is based on a hybrid technique of the
model and data parallelism.
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Table 4. The total training time (in hours) and the numbers of training
parameters of the competing approaches

Total training time (H) Training parameters
IGNCNN [4] 3.28 71016
XuNet [13] 2.6 14661
YeNet [22] 12.43 107671
QianNet [5] 1.66 35508
YedroudjNet [23] 10.62 412082
ZhuNet [25] 23.76 2828562
Proposed 1.12 41474

• The TLU and LReLU activation functions, with lower complexity, have been used
rather than the Gaussian activation function having higher complexity.

• The number of leaning parameters used in the proposed BIS approach is lower than
that of all competing approaches.

7. Conclusions. This paper presents a modified CNN model for enhancing the blind
image steganalysis technique. The proposed approach is able to tackle the problems of
QianNet [5] steganalysis approach by changing the structure of the CNN with efficient ini-
tialization to the first convolutional layer in order to compensate the pre-processing layer,
using a cyclical learning rate. In addition, the Gaussian activation function is replaced
with the LReLU one. The proposed approach and competing ones are implemented on
two GPUs, while the former uses a hybrid model and data parallelism technique in order
to reduce the training time required.

Regarding the detection accuracy metric, the proposed approach outperforms the SRM
+EC [7], GNCNN [10], IGNCNN [4], XuNet [13], YeNet [22], QianNet [5], YedroudjNet
[23] and ZhuNet [25] by an average increase of 5.94%, 8.73%, 7.88%, 11.76%, 13.27%,
8.8%, 8.35% and 1% respectively, in low payloads, with S-UNIWARD steganography -
based stego-images. It also outperforms the SRM+EC [7], GNCNN [10], IGNCNN [4],
XuNet [13], YeNet [22], QianNet [5] and YedroudjNet [23] by an average increase of
8.21%, 12.615%, 10.41%, 9.89%, 2.27%, 2.36% and 2.69% respectively, in low payloads,
when detecting WOW steganography -based stego-images, however, with a comparable
detection error compared to the ZhuNet [25]. Finally, the proposed approach outperforms
the SRM+EC [7], XuNet [13], YeNet [22], QianNet [5], YedroudjNet [23] and ZhuNet [25]
by an average increase of 21.2%, 8.6%, 8.96%, 8.17%, 8.26% and 1.51% respectively, in
low payloads, with HILL steganography-based stego-images.

From the training time perspective, the proposed approach outperforms the IGNCNN
[4], XuNet [13], YeNet [22], QianNet [5], YedroudjNet [23] and ZhuNet [25] by an av-
erage improvement in speed-up factor of 3.93X, 8.76X, 11.1X, 2.32X, 9.48X and 21.2X,
respectively.
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