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Abstract. This paper presents an improved fish migration optimization (FMO), which
adopts novel update equations of individuals and energy. A chieftain concept is introduced
and it can attract individuals to exploitation around it. Therefore, the novel algorithm
reduced the randomness and improved the convergence ability of the original algorithm.
A more flexible update equation of energy is introduced which adjusts the amplitude of
energy increase of individuals according to its fitness quality. The performance of the new
algorithm is verified by CEC 2013 benchmark function. Besides, the novel algorithm is
applied in solving the localization problem of Wireless Sensor Network (WSN) on 3-D
terrain.
Keywords: 3-D localization; DV-Hop; FMO; intelligence computing

1. Introduction. Intelligence computing is an important branch of artificial intelligence,
which is inspired by the swarm intelligence movement that existed in nature. For intel-
ligent computing, the optimal problem is regarded as a black box, that is, the details of
the calculation are ignored, and only the input is adjusted according to the output of the
system to maximize or minimize its output. It can effectively solve various optimization
problems without mathematical formulas. Therefore, it has been paid more and more
attention from scholars in recent years and has made great progress.
There has been many excellent algorithms, such as, Artificial Bee Colony (ABC) [1, 2, 3],
Genetic Algorithm (GA) [4, 5], Differential Evolution (DE) [6, 7, 8], Particle Swarm Op-
timization (PSO) [9, 10, 11, 12], Ant Colony Optimization (ACO) [13, 14], Cat Swarm
Optimization (CSO) [15, 16, 17], QUATRE [18, 19, 20, 21], Black Hole [22, 23]. In addi-
tion, some methods are proposed to enhance the performance of algorithms, in order to
reduce the memory cost, the probability formula is introduced to replace the movement
of population [24, 25, 26, 27, 28]. The surrogate-assisted method is proposed by Sun et
al., which can efficiently reduce the running time of algorithm [29]. The parallel method
can enhance the global search ability by dividing the population into several groups and
exchanging the information in groups [30, 31].
The maturing of microelectronics and wireless communication technologies has aroused
more and more scholars’ attention to WSN. These technologies cause the advance of
multi-functional, smart, extremely small, and inexpensive sensor nodes that have the ca-
pabilities to communicate with each other through a wireless medium [32]. These tiny
SNs comprise of transceiver, dedicated memory, processor, actuator, sensors, and power
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module [33]. Due to the limited size and energy of sensor nodes, sensor nodes cannot han-
dle complex calculations and require efficient use of energy. In the real world, hundreds
or thousands of nodes are randomly deployed in the target area and use wireless media
to communicate with each other to form a WSN.
The accurate location of the sensor node contributes to monitoring the target area. Glob-
al positioning system (GPS) is generally used to identify the location of sensor nodes, but
due to its cost and energy consumption, it is not practical to equip each sensor node with
a GPS module. Some localization methods have been proposed in recent years, which
only need a few sensor nodes to equip with GPS and can calculate the position of other
sensor nodes in various ways. The nodes configuring the GPS module are called anchor
nodes, and the other nodes are called unknown nodes. The existed localization methods
can be divided into range-based localization methods and range-free localization methods.
Range-based localization methods utilize the sensing device equipped in sensor nodes to
obtain the actual range and angle information and further determine the distance between
sensor nodes, such as received signal strength indicator (RSSI), Angle of Arrival (AOA)
and Time of Flight (TOF) methods, etc. These schemes usually estimate the position of
target node by the distance from three or more anchor nodes. Then multiliteration or tri-
angulation techniques are used to estimate the position of target node position. Although
these methods show good performance, additional hardware is required to determine the
actual distance.
In contrast, range-free localization methods only need the connectivity information of
WSN and can estimate the localization of target node, such as distance vector hop (DV-
Hop). But the defect of these methods is obviously, it has low localization accuracy. As
there no spare devices consume energy, these methods can effectively extend the life of
WSN. More and more researcher pay attention to increase the accuracy [34, 35].

2. Related Work.

2.1. Fish Migration Optimization. Pan et al. proposed Fish Migration Optimization
(FMO) in 2010, which simulated the predation and growth process of fish [36]. In nature,
animals are often in dangerous situations, such as being caught by natural enemies or
suffering from natural disasters. It is impossible for all individuals to grow into adults
safely. The algorithm divides the life of the fish into five stages, and each stage has a
survival rate to control the diversity of the algorithm. FMO is consisted of swim process
and migration process.
In order to find more food, schools of fish usually move quickly over a wide area, this
process is presented by swim process in FMO. When algorithm in swim process, the in-
dividual move to any direction to look for optimal value and it is good for avoiding local
optimal value. The population update their position according to Eq. 1

P t+1
d = P t

d +
Er

d · U t
s,d

a+ b · (U t
s,d)

x
(1)

Er
d = E · rand (2)

U t
s,d = P t

d − P t−1
d (3)

Where the rand is a random number between -1 and 1, the E is the energy and the Us

is the velocity of the fish. The more energy a fish has, the faster its speed. The a, b and
x are three constant and they are 2.25, 36.2 and 2.23 respectively. As Er can be positive
or negative value, the individual can move toward to any direction. The most excellent
individual of population is called as Pbest, if the P t+1

d has better fitness value than Pbest,
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the Pbest would be replaced by P t+1
d and the velocity of it will be updated according to

Eq.4. After moving, the energy is need to update according to Eq.5 and if energy more
than up limit of energy, the fish will grow to next stage.

U t
s,d = 2 · U t

s,d (4)

eng =
D∑

d=1

Er
d (5)

During the migration process, some fish will be randomly selected and initialized. The
fishes which belong to stage 1 and stage 2 have no probability to migrate as these fishes
are immature. The probability of migration of other fish is different, and the more mature
the fish, the greater the probability of migration. The migration probability of fishes in
stage 3, stage 4 and stage 5 are 5%, 10% and 100% respectively. If the fish find better
food source, in other words, the algorithm find better candidate, the velocity of this fish
will be updated by the following equation, such that,

Us = π · Us (6)

2.2. DV-Hop Localization Method of WSN. DV-Hop is a range free localization
method and it is proposed by Dragons Niculescu et al. [37, 38]. Many researchers have
focused on it and improved its performance, but most articles have applied dv-hop to
solve two-dimensional localization problems. This paper applies it to three-dimensional
terrain.
In DV-Hop, the first work is each anchor node broadcasts a packet which consist of loca-
tion of anchor node and hop count. The number of hops is initialized to zero and increased
by one every transmit. For a receiving node, it records the minimal hop count between it
and all anchor nodes. Then each anchor node obtains the location of other anchor nodes
and the hop count between them. The distance of ever hop of an anchor node can be
calculated by Eq. 7.

HopSizei =

n∑
j=1,j 6=i

√
(xi − xj)2 + (yi − yj)2

n∑
j=1,j 6=i

hopij

(7)

Where the HopSizei is the average distance of each hop of i-th anchor node, the location
of i-th anchor node is represented by (xi, yi) and the hopij is the hop count between i-th
anchor node and j-th anchor node. The n is the number of anchor nodes, and the distance
between any two nodes can be calculated by the corresponding hop size and hop count.
After that, the distance information can be used to estimate the position of unknown
node by trilateration survey.
In recent years, many scholars have proposed novel method to enhance the ability of DV-
Hop, a novel method to calculate the hop size is presented by adopting the least square
error criterion to revise the localization accuracy and the hop size can be calculated by
Eq.8 [34].

HopSizei =

n∑
j=1,j 6=i

hopi,j · dij
n∑

j=1,j 6=i

hop2ij

(8)
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Where the dij is the straight-line distance between i-th anchor node and j-th anchor node.
The weighting hop size of unknown node to calculated the distance between anchor nodes
and unknown nodes is proposed [35], which is presented in the following equations:

HopSizeun =
n∑

i=1

wi ·HopSizei (9)

wi =
HopSizei∑n

m=1HopSizem
(10)

3. Adaptive and Self Assessment Migration Optimization. From the above de-
scribed about FMO, we can see the FMO algorithm spend the more time making explore,
so it has a weaker exploitation ability. Although the original algorithm has strong per-
formance in avoiding local optimal value, it has some difficulties in exploiting promising
regions.

U t+1
s,d =

Er
d · U t

s,d

a+ b · (U t
s,d)

x
(11)

Besides, the Eq.11 can be obtained by combining the Eq.1 and Eq.3. As the Er
d is a

random number between -1 and 1, the value of a, b and x are 2.25, 36.2, and 2.23 respec-
tively, so the denominator is much larger than the numerator in Eq.11. As the number of
iterations increases, the speed of the fishes becomes slower and slower, the algorithm is at
a standstill after dozens of iterations. This is bad for the algorithm solving optimization
problems.
In the intelligent computing algorithm, the area around the optimal individual is consid-
ered to be the most promising area, which means that a better candidate solution can be
found with a high probability. In order to enhance the exploitation ability of algorithms,
the concept of best individual is introduced in the novel algorithm, which attracts other
individuals exploiting around it. As ”Ther is no free lunch” theorem saying [39], ”any
performance improvement for one type of problem will be offset by performance for an-
other type of problem.” If the algorithm obtain fast convergence rate, it would loss the
stronger global search ability, and it is easily trapped in the local optimal value.
In order to overcome this problem, a self assessment method is proposed in this article.
There are two case will be happen after a individual moving about fitness value, be better
or worse. Therefore, a individual moves forward to a better individual or lefts a worse
individual both can lead to the current individual become better. In the new algorithm,
the population updates their position according to the following equations:

V t+1
i = w · (ptbest − pti) ·

eti
Emax

+
fvi − fvr
|fvi − fvr|

· c · rand · (ptr − pti) (12)

pti + 1 = pti + V t+1
i (13)

Where the w is a weight factor which decreases from 2 to 0.4 as the number of iterations
increases. The algorithm with a lager w at an early stage is contributing to explore more
areas and jump out local optimal value. On the contrary, the algorithm needs to exploit
a promising area carefully. The eti represents the energy of i-th individual at t iteration
and the individual with more energy, the individual can move longer distance.Emax is
a constant value, if the energy of a individual exceed Emax, it would grow to the next
stage and the energy initial to zero. The ptbest, p

t
i, and ptr are positions of best individual,

i-th individual and randomly selected individual at t iteration respectively. The rand is
a random number between 0 and 1, c is a constant value. In addition, the role of ptr can
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be positive or negative. If the function value of ptr is greater than pti, p
t
i will move to ptr,

otherwise pti will move away from ptr.
When an individual did not get a greater function value at the current iteration, the
energy of this individual increases by the Eq.14, such that,

et+1
i = eti +R1 · Emax ·

fvi − fvbest
fvmax − fvbest

(14)

To increase the random disturbance, a random number R1 is introduced with a value
between 2 and 12. The minimum function value is presented by fvbest and fvmax is the
maximum function value. In the new algorithm, the worse the individual, the greater
the energy. In the initialize of the algorithm, all fishes are set to stage 1, as the energy
increase the fishes will grow to stage 2, stage 3, and stage 4. The fishes in stage 1 will
not be initialized randomly, and the probability of the fish in stage 2, stage 3 and stage
4 is 0.15, 0.35, and 1 respectively.

4. Applying Novel Algorithm to Locate the Unknown Nodes on 3-D terrain.
In this paper, the sensor nodes are deployed on the 3-D terrain as shown in Figure 1 and
the terrain is drowned by the “peak” function of Matlab. Sensor nodes communicate with
each other on 3-D terrain, and signals are usually blocked by terrain obstacles, so it is
an important task to detect whether there are obstacles between communication nodes.
Suppose node P sends a message to node S, and there is a point M between them. If the
height of M is higher than the ray height between P and S at the same position, M is
regarded as a terrain obstacle between them. To visually show this situation, Figure 1
was introduced.
Signal transmission is affected by many factors, such as terrain, distance, and vegetation.
This article uses a binary sensor model because it can simply and efficiently calculate
whether nodes can be connected to each other. It is described by the Eq 15, such that,

C(r, s) =

{
1, distance(r, s) ≤ R and there no obstacle
0, distance(r, s) > R or there are obstacles

(15)

The intelligence computing has the advantage of solving optimization problems effectively
and some work has applied it to locate the unknown nodes of WSN on 2-D surface [30].
In this article, the novel algorithm is applied to reduce the locate error based DV-Hop
and the error can be calculated as following:

error = (
n∑

i=1

(
√

(x− xi)2 + (y − yi)2 + (z − zi)2 − dui))2 (16)

Accuracy =
error

radius
(17)

Where the estimated position of i-th anchor node is (xi, yi, zi) and the (x, y, z) is the
position of unknown node. The dui is the estimated distance between unknown node and
i-th anchor node through DV-Hop method. There are n anchor nodes, so the error is the
sum of errors which between all anchor nodes and unknown node. As the purpose of this
article is reduce the localization error, so the fitness function can be described as follows:

f(x, y) = min(
n∑

i=1

(
1

hopui
)2(
√

(x− xi)2 + (y − yi)2 + (z − zi)2 − dui)2) (18)
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The hopui is the hop count between unknown node and i-th anchor node. From this
equation, we can see the novel algorithm is used to look for the best position of unknown
node, which is the most suitable for all anchor nodes. The main work of this article can
be devided into four steps:

• Randomly deploying the sensor nodes on 3-D terrain as shown in Figure 1.
• Forming the connective network by using Eq 15.
• Calculating the distance between unknown nodes and anchor nodes.
• Determind the position of unknown nodes by utilizing novel algorithm and the dis-

tance information.

5. Simulation Results and Discussion.

5.1. CEC 2013 Benchmark Function. CEC 2013 benchmark function is a convincing
test function for intelligence computing algorithm and it is proposed in 2013. This paper
adopts CEC 2013 benchmark function to verify the performance of the novel algorithm
and compares it with some existing algorithms, such as PSO, WOA and BH algorithms.
There are 28 test functions and contains of unimodal functions, multimodal functions and
composition functions. The simulations are implemented on the same notebook comput-
er which equip with an i5-7300HQ CPU @2.5GHz and every result is means of 30 runs.
Due to the poor performance of the original FMO under the benchmark function of CEC
2013, it did not participate in the results. The simulation results are presented in Table
1, the best results is marked by underline for every test function and the f1 to f5 are
unimodal functions, they mainly checkout the convergence rate of optimization algorith-
m. In order to verify the performance of avoiding local optimal value of algorithms, the
CEC 2013 introduced multimodal functions and denoted f6 to f20. Besides, f21 to f28 are
composition functions and their simulation results can reveal comprehensive performance
of optimization algorithms.
Table 1 lists the simulation results of the four algorithms under the CEC 2013 test suit-
e. The search ability of the novel algorithm on 13 benchmark functions is better than
other algorithms, and the same results are obtained on two functions. On the unimodal
function, the new algorithm obtains the optimal values on f3, f5 and f6, while the P-
SO algorithm has the best performance on other functions. The results about unimodal
functions reveals the novel algorithm has excellent convergence rate as same as PSO. The
multimodal function can verify the ability to avoid the local optimal value of the algorith-
m, and the performance of the proposed algorithm on five multi-peak functions is better
than other algorithms. The results show that the algorithm has good global search capa-
bilities. The algorithm obtains optimal values on five composition functions. In contrast,
the PSO algorithm obtains three optimal results, while other algorithms cannot find opti-
mal values on composition functions. The results of Table 1 indicates the novel algorithm
has excellent convergence speed and is good at solving complex optimization problems.
In addition, in the results of 30 experiments, the new algorithm achieved the smallest
standard deviation in 21 test functions, so the stability of the algorithm is outstanding.
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Figure 1. Simulation Results of CEC 2013 (1)

In order to intuitively present the performance of algorithm, the optimization process is
showed in Figure 1 and Figure 2. On unimodal function, the proposed algorithm perform
fast convergence rate, as adding the attract of best position of population to the novel
algorithm, it can find the the value which close to the optimal value before 200 iterations
on most unimodal functions. Benefit form the increase of diversity, the novel algorithm
can jump out the local optimal value and further explore promising area. These figures
obviously show the new algorithm continuously jumps out the local optimal value and
finds the optimal value finally om f8, f11, f12 and f13. About composition problems, the
novel algorithm is outstanding from other algorithms, the concept of energy is introduced
to this algorithm make the algorithm abandoning some valueless area timely. Therefor,
the algorithm perform the excellent search ability on f21 to f28 functions.
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Figure 2. Simulation Results of CEC 2013 (2)

5.2. DV-Hop Localization Method of WSN on 3-D Terrain. In this section, a
new algorithm will be applied to reduce the positioning error of DV-Hop on 3-D terrain,
and the simulation results are discussed. The 3D terrain used in this article is formed by
Matlab, as shown in Figure 3. As can be seen from the figure, there are many ”depression”
and ”mountains” that can effectively block the signal. Therefore, this 3-D terrain can y
simulate a complex real-world environment.

The sensor nodes are randomly deployed on 3-D terrain as above figure shows in initial
step, and the plane area of simulation terrain is 50 × 50 meters. In order to fully test
the performance of the new algorithm applied to DV-Hop, two simulations are provided
in this section. The data used to draw the graph is the average of 30 runs, and the
positions of the nodes in the two simulations are generated independently. In the first
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Figure 3. The 3-D Terrain which Sensor Nodes Deployed
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Figure 4. The Influence of Communication Radius on Results

simulation, there are 30 anchor nodes and 170 unknown nodes. The position of 200
nodes is randomly generated and save it into a matrix. Every group experiment has
different communication radius and the results of this simulation are showed in Figure
4. The abscissa is the communication radius of sensor node, the ordinate is localization
error rate and it can be calculated by Eq.17. The figure shows that WSN usually has a
longer communication radius, positioning is more accurate, and the DV-Hop combined
with intelligent computing is significantly superior to the original DV-Hop. When the
communication radius is set to 30, the simulation result is worse than the radius set to
25. As the communication radius increases, the number of hops between sensor nodes
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Figure 5. The Influence of Sensor Node Number on Results

becomes smaller, resulting in a larger positioning error. Therefore, if the communication
radius is too long, the positioning accuracy cannot be improved. It is important to set an
appropriate communication radius.
The number of node also has important influence on localization accuracy, so this paper
presents the simulation results of different account of sensor nodes. The communication
radius is set 20 meter for all nodes and the position of sensor nodes used in this simulation
is stored in matrix. The account of anchor nodes is 30 for every group experiment. The
Figure 5 indicates the experimental results. The localization error rate increases with
number of nodes commonly for most method instead of DV-Hop, and there is a abnormal
point when sensor node number is 300. This is because the position of the nodes in each
set of experiments is generated independently, so the position information is different.
When the number of sensor nodes is 300, there may be more obstacles between nodes
than other experiments, or fewer hops between nodes, which will lead to an increase in
the positioning error rate. Based on these simulation data, the intelligent calculation
algorithm combined with DV-Hop can effectively improve the accuracy and stability of
the original DV-Hop. In addition, the new algorithm is competitive and can reduce the
localization error rate more effectively than the PSO algorithm.

6. Conclusion. In this paper, the FMO algorithm is extended to ASAFMO. The adap-
tive strategy is applied on energy and position update, the more energy the fish has, the
faster speed the fish has. When a fish with a worse function value, the energy of this fish
increase substantially. The CEC 2013 benchmark function is used to verify the perfor-
mance of the new algorithm and compare it with other famous algorithms. Besides, the
novel algorithm is applied to solve the localization problem of WSN on 3-D terrain. The
simulation results indicate the accuracy of DV-Hop is improved obviously by combining
with the novel algorithm. The proposed scheme can be further improved by adopting
some efficient approaches [40, 41, 42, 43, 44].
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