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Abstract. Direction-Finding (DF) is a critical task in array signal processing for vari-
ous applications such as radar, sonar, and wireless communication systems. Traditional
Uniform Linear Arrays (ULAs) have been widely employed due to their simplicity and
ease of implementation. However, ULAs suffer from limitations in terms of angular res-
olution, accuracy, mutual coupling, low signal-to-noise-ratio (SNR) scenarios, and dense
environment handling. Sparse arrays, with their different types of configurations each
having its pros and cons, have emerged as a promising alternative. In comparison to
ULAs with an equal number of antenna elements, sparse arrays possess superior esti-
mation performance in terms of accuracy and resolution. Consequently, this attribute
leads to cost and complexity reduction, making sparse arrays highly valuable for various
applications. This paper provides a comprehensive review of the fundamental princi-
ples of using sparse arrays for Angle of Arrival (AOA) estimation and compares the
performance of the most common types. It then focuses on comparing the estimation
performance of sparse arrays with ULAs based on of CramrRao bound (CRB) analysis.
Theoretical analysis and simulation results demonstrate that sparse arrays outperform
ULAs in terms of accuracy and angular resolution, providing strong support for their
use in DF and highlighting its importance in real-world scenarios. To validate these
findings, a prototype implementation using the National Instrument Universal Software
Radio Peripheral (NI-USRP) Software Defined Radio (SDR) platform is developed to
implement both sparse array-based and ULA-based DF and compare their performance.
The experimental results yield in giving the best rating for sparse arrays over ULAs.
Keywords: AOA;Sparse; USRP; SDR ; MUSIC;Difference co-array.

1. Introduction. Accurate AOA estimation is crucial for many applications, such as
radar, sonar, and wireless communication systems [1, 2]. Over the years, ULAs, con-
sisting of equidistantly spaced antennas along a straight line, have been used for AOA
estimation due to their simplicity and ease of implementation [1,3]. However, ULAs suffer
from certain limitations that hinder their performance in certain scenarios. Insufficient
angular resolution and diminished accuracy represent significant limitations associated
with ULAs, particularly when dealing with closely spaced sources or a reduced number
of array elements. Therefore, to attain great accuracy, numerous antenna elements are
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needed, which can be expensive and computationally complex [4, 5]. In practical ap-
plications, the use of ULAs for AOA estimation is also impacted by mutual coupling
between the antenna elements [6]. This coupling can significantly affect the accuracy of
AOA estimation [6, 7]. Several methods, relying on an assumed mutual-coupling model,
attempt to eliminate the mutual coupling impact from acquired data. However, these
methods are computationally intensive and can be susceptible to errors caused by dis-
parities between the actual system and the used model [8]. Another limitation for ULAs
is the inability to deal with dense environments in which the number of sources ex-
ceeds the number of elements in the array [3–5]. Due to these limitations, sparse array-
based DF has emerged as a promising alternative that gained great attention in recent
years [9–11]. Sparse arrays offer significant benefits over ULA in effectively addressing
mutual coupling effects. Through a thoughtfully designed arrangement of antenna ele-
ments in sparse arrays, the inter-element spacing is increased, resulting in reduced mutual
coupling between neighboring antennas. Consequently, sparse arrays are well-suited for
applications where minimizing mutual coupling is essential, leading to enhanced array
sensitivity and improved array performance in practical scenarios [9, 10]. Moreover, due
to their larger aperture and the higher degree of freedom sparse arrays can maintain
higher resolution and accuracy with a reduced number of antennas, particularly in low
SNR situations, resulting in a lower cost, and complexity [9–11]. Sparse arrays come
in several types, including Minimum-Redundancy-Array (MRA), Coprime-Array (COA),
Nested-Array (NA), and Super-Nested-Array (SNA) [9,10,12,13]. MRA achieves a greater
aperture and higher degree-of-freedom (DOF) by maximizing the number of consecutive
lags in the difference co-array (DCA) while minimizing redundancies [10, 14]. However,
due to the absence of a closed-form expression for the MRA configuration, designing the
array is challenging [13–15]. COA has a sparse structure with a relatively large aperture
and lower mutual coupling effect, but the DCA contains holes that reduce the effective
degree of freedom [12, 14, 15]. NA is designed to increase the aperture and achieve a
higher degree of freedom in AOA estimation, but it has a greater mutual coupling effect
due to a large number of antenna elements with a unit inter-element spacing [10]. SNA
combines the advantages of all of these types. It has the same DCA properties as NA but
with a more sparse structure, resulting in a lower mutual coupling effect [10,14,15]. This
paper explores the viability of employing sparse arrays as an alternative to using ULAs
in AOA estimation. The investigation includes comprehensive simulation analysis and
practical verification, demonstrating the superior estimation performance of sparse arrays
when compared to ULAs. At first, this study reviews the fundamental principles of using
sparse arrays for AOA estimation and explore the performance of different types of sparse
arrays. Then the performance of these arrays is compared to the ULAs. Theoretical and
simulation analysis indicates that MRA and SNA offer superior performance compared
to NA and COA. Furthermore, the simulation results reveal that sparse arrays provide
better resolution, accuracy and lower mutual coupling than ULAs. Finally, in order to
support the simulation results, we have built a prototype implementation using SDR tech-
nology. The experimental results demonstrate that the 3dB beam-width (BW) is smaller
for sparse arrays than for a ULA, indicating improved resolution and accuracy. The rest
of this paper is organized as follows: Section 2 discusses the fundamentals and the signal
modeling for sparse array-based AOA estimation, explores the different types of sparse
arrays and compares them theoretically. Furthermore, It incorporates a comparison be-
tween ULAs and sparse arrays in terms of CRB, serving as a crucial metric parameter for
assessing and contrasting estimation performance. Section 3 presents a simulation-based
analysis that corroborates the findings derived from the theoretical investigation. The
simulation analysis specifically focuses on comparing the AOA estimation performance
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using both ULAs and sparse arrays. Theoretical and simulation analysis can help in
choosing the optimal sparse array type to implement, taking into account the available
laboratory hardware limitations, for comparison with ULA. Section 4 introduces the prac-
tical verification of the results obtained from the theoretical and simulation investigations.
It provides comprehensive details on the practical implementation of both ULAs and the
selected sparse array type using the NI-USRP SDR platform for the purpose of assessing
and contrasting their respective performances. Finally, the paper is concluded in Section
5.

2. Sparse array-based direction finding.

2.1. Signal model. Assume M narrow band far-field Signal-of-Interest (SOI) impinging
on an antenna array with N physical elements where elements locations are equal to
n times of d with n belonging to integer set P that represents the normalized sensors
locations and d = λ

2
denotes the inter-element spacing. The propagation channel is

assumed to be a White-Gaussian-Noise channel (AWGN) in which noise samples are i.i.d
and has normalized Gaussian distribution ∼ N (0, σ2). The received signal xP can be
modeled as follows:

xP =
M∑
i=1

AsP(θi) + n (1)

Where n is the noise term, θi represents ith source AOA ,Ai is the ith signal amplitude

and sP(θi) =
[
ej

2π
λ
nd sin θi

]
n∈P

is the steering vector associated with θi. We also assume

that SOIs and noise are uncorrelated. From (1),covariance matrix can be represented as
follows:

R =
M∑
i=1

A2
i sP(θi)s

H
P (θi) + σ2I (2)

The product term sP(θi)s
H
P (θi) in (2) can be modeled as ej

2π
λ
(n1−n2)d sin θi where n1,n2 ∈ P.

This indicates that while determining the correlation matrix, the distance between the
sensor locations has a more critical effect than the actual sensor locations themselves
[10, 12]. As a result, the correlation matrix can be converted into a correlation vector by
using the Kronecker product [9, 10,12], as expressed below:

xV = vec(R)

=
M∑
i=1

A2
i sV(θi) + σ2Ĩ

(3)

Where Ĩ = vec(I) and sV(θi) =
[
ej

2π
λ
(n1−n2)d sin θi

]
n1,n2∈P

n1 − n2 = m ∈ V with V defined

as the DCA of the array P, which can be expressed as follows: Let the normalized sen-
sors locations in a sparse array are defined by the integer set P, then the DCA can be
formulated as follows:

V = {nj − nq|j, q ∈ P} (4)

Simply the distinct entries of V is obtained by subtracting all possible sensor locations
in the given sparse array and DCA is then formed by considering only the non-repeating
differences [13, 14]. Based on the definition of the DCA, some new definitions can be
deduced as follows : [13,14]

• Central uniform linear array segment (CULA): It is regarded as the largest contin-
uous central section of the DCA that doesn’t have any holes in it. Throughout this
paper, CULA is denoted by the symbol U.
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• Uniform Degree of Freedom (UDOF): A more useful parameter, which is denoted by
the symbol ξ, indicates the number of continuous entries in the DCA .

• Restricted array: If the DCA of an array is hole-free, the array is said to be a
restricted array.

By comparing (1) with (3), xV in (3) can be assumed to represent the signal received from
an antenna array with a new array-manifold SV=[sV(θ1), ..., sV(θM)] which represents a
manifold of a larger array with sensors locations determined by the DCA. The DCA
output, xV, contains only one snapshot resulting in a rank-one covariance matrix. As a
consequence, subspace-decomposition algorithms cannot be employed for AOA estimation
[9, 12]. In this paper, the spatial smoothing strategy is used to generate a positive semi-
definite matrix with a big enough rank that is a need for applying subspace-decomposition
algorithms for AOA estimation [12]. Consequently, the virtual ULA is first split into L
overlapping uniform sub-arrays each with a size of L elements [16] and the output output
of the lth sub-array is defined as follows [16]:

yl = ΥlxV (5)

Where l = 1, 2, ...., L and Υl represents the selection matrix for the lth sub-array which
can be formulated as follows:

Υl =
[
0L×(l−1) IL×L 0L×(L−l)

]
(6)

Consequently, the definition of the covariance matrix that is resulted from using the spatial
smoothing strategy can be defined as follows [9, 16]:

RV =
1

L

L∑
l=1

ylyl
H (7)

Thus, the spatially smoothed covariance matrix RV can be used with the MUSIC al-
gorithm, one of the subspace-decomposition algorithms, to perform AOA estimation as
expressed by the following equation [9, 10]:

PMUS(θ) =
1

aH(θ)QnQH
n a(θ)

(8)

Where Qn and aH(θ) represent noise-subspace eigenvectors and the steering vector, re-
spectively.

2.2. Various sparse array types. A sparse array will raise the DOF, which will be
closer to N(N − 1), for any array structure [14]. As a result, the array should perform
better than a ULA with the same length and detect a larger number of sources. Alter-
nately, the same ULA performance could be obtained with fewer sensors in sparse array
which lead to lower cost, weight, computational complexity ... etc. Along with increasing
the DOF, sparse-arrays can aid in lowering the mutual coupling effect, which in turn
improves estimation performance [10,14]. Sparse arrays come in a several types, but here
we’ll focus on the most common and significant ones [9, 10, 13, 14]. Figure 1 illustrates
physical elements’ normalized locations and the DCA of the sparse array geometries under
concern.

2.2.1. Minimum-Redundancy-Array (MRA). In a MRA, the goal is to maximize the DCA
while minimizing the number of redundancies and preventing the introduction of any
holes into the co-array [14, 17]. Since MRAs lack closed-form expressions, finding the
ideal array and figuring out the ideal sensor locations necessitate an exhaustive search [9].
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(a) MRA (b) NA

(c) COA (d) SNA

Figure 1. Different sparse array geometries. Blue dots denote physical
sensors and blue crosses represent the empty positions in the physical layer.
Black squares denote DCA elements and black crosses denote DCA holes.
Number of physical sensors, for illustration, is assumed to equal 6 sensors

The following equation represents the optimization problem to determine sensor locations
in MRAs [13,17].

maximize
PMRA

|V|

subject to |PMRA| = N,V = U
(9)

Where PMRA denotes the MRA sensor locations. In terms of the maximum number of
consecutive lags and hole-free co-arrays, MRA is optimal for a given number of sensors,
but it is challenging to locate these sensors [13,14]. For scenarios, especially when a larger
array of sensors needs to be created, extracting sensors locations requires a lookup table
or advanced search, neither of which is practical [14].

2.2.2. Nested-Array (NA). It offers a higher DOF than ULAs, but less than MRAs, while
having a closed-form equation for the array geometry [9,14].NA is consisted of two uniform
linear sub-arrays, one of which is a dense array with N1 sensors and inter-element spacing
of d = λ

2
, while the other is more sparsely spaced withN2 sensors and inter-element spacing

of (N1 + 1)d [13, 17]. NA follows the following equation for determining the normalized
sensors’ positions [17].

PNA = {1, 2, ...., N1, (N1 + 1), 2(N1 + 1), ...., N2(N1 + 1)} (10)

NA geometry has the benefit of having a simple design equation that is helpful for creating
arrays with so many elements. Another benefit of NA is that there are no holes in its
DCA, which is made up of continuous integers from −N2(N1+1)+1 to N2(N1+1)−1 [17].
The mutual coupling between neighboring antenna elements of NA becomes considerable
and impairs the AOA estimation accuracy as the number of sensors which are separated
by only unit inter-element spacing increases and this is thought to be the major drawback
of the NA design [14].

2.2.3. Coprime-Array (COA). COA is made up of two ULAs with sensor separations of G
and U , where G and U are coprime integers and G < U [13,17]. It is simple in design and
features the following closed-form equation for the normalized sensor position [12,13,17].

PCOA = {0, G, 2G, ..., (U − 1)G,U, 2U, ..., (2G− 1)U} (11)

The COA’s DCA actually has a maximum CULA segment from −(GU + G − 1) to
(GU + G − 1), with hole positions outside of this range [14, 17]. The COA’s geometry
drawback is that its DCA is not hole-free, which means it presents less DOF than the
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nested array [12,13,17]. However, when the mutual coupling is a significant issue, COAs
are preferred because they allow for a wider neighboring sensor spacing [12,17].

2.2.4. Super-Nested-Array (SNA). Given the benefits and drawbacks of the sparse array
types previously discussed, there was a need for an alternative array geometry that satisfies
the following characteristics

• DCA should have a large CULA with no holes.
• The sensors’ location must be described by a straightforward equation.
• The array should have a smaller number of sensor pairs with strong mutual coupling
and inter-element spacing equal to d.

All of these features are achieved in the SNA [13,14,17]. SNA uses the following formula
to determine the normalized sensors’ locations [10,14].

PSNA = S1 ∪Q1 ∪ S2 ∪Q2 ∪ T1 ∪ T2 (12)

where

S1 = {1 + 2r ; 0 ≤ r ≤ χ1}
Q1 = {(N1 + 1)− (1 + 2r) ; 0 ≤ r ≤ β1}
S2 = {(N1 + 1) + (2 + 2r) ; 0 ≤ r ≤ χ2}
Q2 = {2(N1 + 1)− (2 + 2r) ; 0 ≤ r ≤ β2}

T1 = {r(N1 + 1) ; 2 ≤ r ≤ N2}
T2 = {N2(N1 + 1)− 1}

with

(χ1, β1, χ2, β2) = (f, f − 1, f − 1, f − 2) for N1 = 4f

(χ1, β1, χ2, β2) = (f, f − 1, f − 1, f − 1) for N1 = 4f + 1

(χ1, β1, χ2, β2) = (f + 1, f − 1, f, f − 2) for N1 = 4f + 2

(χ1, β1, χ2, β2) = (f, f, f, f − 1) for N1 = 4f + 3

where f is an integer and (N1 + N2) represents the total number of physical elements.
The best option for N1 and N2 is to be evenly distributed [18]. From (12), SNA geometry
is created by making the following changes to its parents’ NA geometery. It is necessary
to redesign the dense sub-array by omitting some sensors and carefully reallocating them
to avoid the mutual coupling effect that emerged as a result of the NA’s dense sub-
array [10,13,14]. The dense sub-array elements are split into four sub-arrays, each with an
element spacing of 2d and then the sensor at position N1 +1 is shifted to N2(N1 +1)− 1.
As a result, SNA dramatically reduces the number of sensor pairs with separation d.
Consequently, SNA is thought to be more sparse than NA,and hence lowers the mutual
coupling effect [10, 13, 14]. SNA has the same co-array as the NA but with modified
normalized sensor location [10,14]. As its DCA has no holes, SNA is widely known to be
a restricted array [10,14].

2.3. CRB analysis. The CRB plays a crucial role in the estimation process by providing
the fundamental limit on the achievable accuracy of parameter estimation [19].The CRB
enables researchers to assess the impact of various factors, such as noise levels, signal
characteristics, and array configurations, on the accuracy and resolution of the estimation
process [9,19,20]. In [19], CRB equation was proposed to account for scenarios where the
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number of sources is either smaller or greater than the number of elements in the array.
The equation can be expressed as follows:

CRB(θ) =
1

4π2D

(
BH

0 Π
⊥
CKV

B0

)−1
(13)

Where,

B0 = C(diag(V))× SV × (diag(p1, p2, ...., pM)) (14)

C = (JH(RT ⊗R)−1J)
1
2 (15)

After simple mathematical manipulation to express several SOIs with different powers, R
in equation (2) can be written as follows:

R =
M∑
i=1

pisP(θi)s
H
P (θi) + pnI (16)

SV = [sV(θ1) sV(θ2) .... sV(θM)] (17)

KV = [SV e0] (18)

where D,M ,pn and pi are the total number of snapshots, number of sources, noise power
and the ith source power, with i = 1, 2, .... ,M , respectively. The matrix J, which had
been explained in detail in appendix ”B” in [19], is a binary matrix with size |P|2 by |V|
with its column that is associated with the difference m is given by:

⟨J⟩:,m = vec(I(m)) ,m ∈ V (19)

where the matrix I(m) has a size of |P| by |P| and satisfies the following condition:

⟨I(m)⟩n1,n2
= { 1, if n1 − n2 = m,

0, otherwise.
, n1, n2 ∈ P (20)

Substituting CKV = ∆, the matrix Π⊥
CKV

becomes equivalent to the matrix Π⊥
∆. The

matrix Π⊥
∆ can be computed through the following equation, discussed in detail in [19]

Π⊥
∆ = I−∆(∆H∆)−1∆H (21)

The symbol e0 represents a column vector such that e0 ∈ {0, 1}|V| satisfying the following
condition:

⟨e0⟩m = { 1, if m = 0,
0, otherwise.

, m ∈ V (22)

The term B0 is dependent on the characteristics of the DCA and its length, while the term
C is influenced by the array configuration P, which encompasses the physical elements’
positions. Therefore, the array configuration, characteristics, and length of the DCA have
a significant inverse impact on the CRB [9, 19]. Sparse arrays characterized by a sparser
array configuration P, result in a larger array aperture, and a larger DCA [9, 11, 13, 14].
Consequently, based on (13) to (18), sparse arrays exhibit a reduced CRB compared to
ULAs when considering an equal number of sources. This indicates that sparse arrays
provide superior resolution and accuracy in AOA estimation compared to ULAs [9,20,21].
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Figure 2. MUSIC pseudo-spectrum using ULA.

3. Simulation Analysis. MATLAB-based simulation analysis is conducted to evaluate
the performance of sparse arrays in AOA estimation and compare their estimation per-
formance capabilities with traditional ULAs. We assume four narrow-band non-coherent
sources with their respective AOAs being [0◦, 10◦, 20◦, 30◦]. We consider signal propaga-
tion over an AWGN channel with an assumed SNR of 0 dB. The number of snapshots
equals 1000 snapshot. The array comprises a total of 6 physical elements, which are
distributed according to each array type. For instance, As illustrated in figure 1a the
sensor locations for MRA are given by PMRA= {0, 1, 6, 9, , 11, 13} as mentioned in [10].
Consequently, its DCA, V, extends from −13 to 13, without any holes. Notably, this
leads to CULA, U , ranging from −13 to 13 resulting in a UDOF ξ=27. Accordingly,
the maximum number of sources that can be identified is (ξ − 1)/2 =13 source [14, 17].
Similarly, for NA with N1=N2=3 the sensor locations, which are derived using (10), are
given by PNA= {1, 2, 3, 4, 8, 12} as shown in figure 1b. This leads to V that extends from
−11 to 11 with no holes. Consequently, U ranges from −11 to 11 resulting in ξ=23 which
enables detection of 11 sources at maximum. In case of COA with G=2 and U=3 the
sensor locations are obtained from (11), giving PCOA= {0, 2, 4, 3, 6, 9} as illustrated in
figure 1c. As a result, V extends from −9 to 9 with holes at position −8 and 8. This leads
to U that ranges from −7 to 7, resulting in ξ=15 and enabling the detection of a maxi-
mum of 7 sources. Figure 1d, displays SNA with sensor locations PSNA= {1, 3, 6, 8, 11, 12}
according to (12). V extends from −11 to 11 with no holes leading to U ranges from −11
to 11. Consequently, it has ξ=23, enabling the detection of a maximum of 11 sources at
maximum.

Finally, the ULA sensor locations is given by PULA= {0, 1, 2, 3, 4, 5}, resulting in V that
extends from −5 to 5 with no holes making U has the same range and hence ξ = 11 which
allow detection of 5 sources at maximum. The estimation accuracy and resolution for
the previously mentioned sparse arrays are assessed in this simulation. Mutual coupling
contaminates SOIs and the DF process is carried out immediately without the use of any
decoupling techniques. RMSE of the estimated AOA can be described as follows [17]

RMSE =

√√√√ 1

M

M∑
t=1

(θ̃t − θt)2 (23)

Where θ̃t represents the estimation of the real angle θt, while M denotes the total number
of sources impinged on the array. Figure 2 demonstrates how inaccurately ULA identifies
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Figure 3. MUSIC pseudo-
spectrum using MRA.

Figure 4. MUSIC pseudo-
spectrum using NA.

Figure 5. MUSIC pseudo-
spectrum using COA.

Figure 6. MUSIC pseudo-
spectrum using SNA.

the four peaks related to the SOIs. It achieves 30.0477◦ RMSE. Figure 3 and 6 show that
in terms of resolution and accuracy, MRA and SNA have the best estimation performance.
For MRA and SNA, the RMSE values were 0.55◦ and 0.504◦, respectively. Both NA and
COA can detect SOIs peaks as shown in figure 4 and 5, but with greater estimating
error, achieving RMSE values of 1.28◦ and 8.52◦, respectively. These results show that
SNA has the best-estimating performance in terms of accuracy and resolution followed
by MRA, NA, and COA in that order and finally, ULAs demonstrate the least favorable
performance. This gives preference to using sparse arrays over ULAs.

4. Experimental Results. Theoretical analysis and simulation results both support the
assertion that AOA estimation using SNA has the best estimation performance, followed
by MRA. Based on these findings and the limited resources in our laboratory, MRA was
chosen to be implemented. In this section, we develop a prototype based on the NI-USRP
SDR platform for AOA estimate utilizing MRA, as shown in figure 7a and 8a , and evaluate
its performance in comparison to the outcomes of ULA-based estimation as illustrated
in figure 7b and 8b. Figure 7 represents the schematic block diagram of DF experiential
setup, in which one USRP-2930 is employed as an SOI transmitter and four USRPs-2930
form a four-channel RF receiver. Phase synchronization and the calibration procedure are
carried out using an additional USRP-2930 and an external clock distributor (Octoclock)
to eliminate the constant relative phase offsets that exist between receive channels. In our
prior publication [22], we described phase synchronization and the calibration procedure
steps in detail. Table 1 contains a list of the used components in DF experiment setup.

In contrast to MRA, which has a non-uniform spacing between the elements as shown
in figure 7a, ULA has a uniform spacing between every two succeeding elements d = λ

2
as

illustrated in figure 7b. As shown in figure 8,Both the MRA-based and ULA-based DF
functional block diagram, which illustrates the data flow and processes of LabVIEW-based
DF receiver design code, in figure 8, have four loops in order to speed up the processing.

• The parameters identification loop: takes reception parameters and filter coef-
ficients as inputs. It also includes the array geometry designing steps.
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(a) Sparse array (b) ULA

Figure 7. Experiment schematic block-diagram

(a) DF using Sparse array (b) DF using ULA

Figure 8. LabVIEW-based DF receiver functional block diagram

• The acquisition loop: starts the USRP session so that the signal acquisition can
be performed.

• Processing loop: phase synchronization, SOI filtering and AOA estimation steps
are all applied in this loop.

• Data transfer loop: in which received data is transferred from the acquisition loop
to the processing loop.



Angle of Arrival Estimation Precision: Sparse vs. Uniform Linear Arrays 205

Figure 8b represents the functional block diagram, which illustrates the data flow and
processes of LabVIEW-based DF receiver design code, utilized with the USRP-2930 plat-
form after a variety of adjustments for ULA-based DF, as we demonstrate in our ear-
lier paper [22]. The newly constructed DF receiver functional block diagram for sparse
array-based DF is shown in Figure 8a, where the processing loop and the parameters
identification loop are adjusted as follows. At first, we add a ”design sparse antenna

(a) SubVI front panel (b) SubVI block diagram

Figure 9. Design sparse antenna array structure SubVI

array structure” SubVI to the parameters identification loop, which is utilized to create
the sparse array geometry. As illustrated in figure 9, this SubVI returns the DCA indices
vector, the distance between array elements, the normalized element positions, the non-
negative portion size of the CULA, the indices of the CULA segment in the DCOA, and
its size in accordance with the chosen sparse array type, the design parameters of each
type, and the number of physical elements in the array. Figure 9a represents this SubVI
front-panel while figure 9b represents its LabVIEW block diagram graphical code that
shows how MATLAB and graphical code are combined in the same LabVIEW program
using a Math-Script Node. Secondly, we add a ”virtual covariance matrix estimation”
processing stage to the processing loop to perform the virtual array processing steps. In
this stage, the DCA output is first estimated, and then the CULA segment output is
extracted. Subsequently, spatial smoothing is utilized to estimate the virtual covariance
matrix, which is then used by the MUSIC algorithm to estimate AOA. Reducing the
mutual coupling effect and increasing the effective CULA part in the DCA for MRA over
ULA improves estimation performance in terms of accuracy and resolution. This gives
sparse-arrays-based AOA estimation a competitive edge over ULA-based AOA estimation.

Table 1. List of used components in DF experiment setup

Item Version Amount Function

CPU HP Core I7 1 Host for signal processing

USRP NI USRP-2930 6
Four USRPs to form 4-channel receiver (Rx) one USRP is utilized as reference-signal

transmitter one USRP is utilized as SOI transmitter

Clock distributor OctoClock-G CDA-2990 1 LO synchronization in all Rx-USRPs Aligning ADC timestamp

Gigabit Ethernet

Switch TP-Link 1 Connect all USRPs to host PC

Software LabVIEW 2019 Processing environment

Rf antennas VERT400 Antenna 783074-01 5 Four antenna elements for the receiver one antenna element for SOI transmitter

Operating system Windows 10

power splitter Mini-Circuits ZFRSC-4-842-S+ 1 power splitting for the calibration process

Cables SMA-M to SMA-M 17 For all connections illustrated in fig 7
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(a) Sparse array (b) ULA

Figure 10. Experimental validation results for DF based on sparse array
Vs ULA

Previous outcomes ensured by the experimental results, in which the 3dB BW decreased
from 30◦ in case of using ULA to 10◦ in case of MRA, as shown in figure 10.

5. Conclusion. In conclusion, this paper conducted a comprehensive analysis and prac-
tical implementation of sparse arrays versus ULAs for AOA estimation. The study com-
menced with a review of sparse array-based DF, exploring its idea of operation and its
most well-known configuration types. Subsequently, a comparison between sparse arrays
and ULAs was made, with the CRB serving as the metric for evaluating estimation per-
formance. The theoretical study ensured the following findings: unlike NA and COA,
which contain a closed-form equation, MRA lacks an equation for determining the sensor
positions. However, it tries to maximize DCA while limiting the number of holes; when
there is strong mutual coupling, COA is better, but it has a smaller DOF. In contrast,
NA achieves larger DOF, which enhances estimated performance and resolution; nonethe-
less, NAs performance is significantly affected by the presence of strong mutual coupling.
SNA seeks to overcome every drawback and maximize every benefit of the earlier types.
Theoretical studies further confirmed that sparse arrays are less susceptible to mutual
coupling compared to ULAs. They can achieve equivalent accuracy and resolution as
ULAs while utilizing fewer antenna elements, resulting in reduced costs and complexity.
Additionally, sparse arrays prove to be effective in dense environments, unlike ULAs. To
reinforce the theoretical analysis, a simulation study was conducted. The simulation re-
sults corroborated the theoretical findings, further highlighting the superiority of sparse
arrays over ULAs in terms of estimation performance. In this simulation, the DOF is
11, 27, 23, 15 and 23 for ULA, MRA, NA, COA and SNA, respectively. The simulation
results demonstrated that SNA achieves the highest accuracy and resolution, with RMSE
of 0.504◦, followed by MRA, with RMSE of 0.55◦, then NA and COA, respectively. On
the other hand, ULAs exhibit the poorest accuracy and resolution, with an RMSE of
30.0477◦. Consequently, SNA receives the highest rating, followed by MRA. The practi-
cal verification phase offered further validation for the effectiveness of sparse arrays using
the NI-USRP SDR platform. This is evidenced by the decrease in the 3dB BW from 30◦

in ULA to 10◦ in MRA. The experimental results establish that sparse arrays consistently
received the highest ratings when compared to ULAs. Our future study will focus on
improving the estimation performance of sparse-array-based Direction finder in low SNR
scenarios.
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