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Abstract. In the field of image processing, multi-label learning poses a significant chal-
lenge, especially in cavity recognition. Additionally, combining multi-label learning with
contrastive learning represents a substantial advancement in image processing and serves
as a motivation to support cavity recognition in humans, aiding dentists in making more
effective diagnoses. In this paper, we propose a deep learning model to learn both multi-
label features and image features. Since multi-label features and image features are in-
herently discrete, using contrastive learning and a multi-label model is a way to connect
them. Extensive experiments were conducted on the ImageNet-mini dataset and our self-
collected P-Deltal dataset, achieving 85.65% and 89.28% mAP, respectively, for each
dataset.
Keywords: Multi-modal classiication, tooth decay recognition, Multi-label, Contrastive
learning

1. Introduction. Dental caries is one of the most common oral diseases. Since humans
constantly need to eat and drink, bacteria from food can ferment and create fissures on
the surface of teeth, leading to cavities over the years. Dental caries is mostly observed in
children, adolescents, and the elderly, but it can occasionally occur in adults and infants
as well. Therefore, without proper dental care and early detection of cavities, it can
significantly impact human health [1, 2].

Recently, artificial intelligence technology has advanced rapidly, particularly in image
processing. This provides a foundation for us to build an AI model to identify images of
dental caries, thereby assisting doctors in diagnosing and treating the condition quickly
and effectively. However, most AI models require extensive data labeling for training,
which is time-consuming and costly [3, 4]. Thus, in recent years, several research groups
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[5, 6] have proposed more efficient image feature representation models to facilitate easier
and more effective training.

Choudhury et al. [7] expanded the approach by using zero-shot learning mechanisms
to learn objectives based on an image n-gram dictionary and predict the highest-scoring
class. The research by Gao [8] and Dong [9] recently demonstrated the potential of
using Transformer models to learn image features from textual features. However, the
integration of learning image and text representations remains limited. Additionally, the
accuracy of these technologies is relatively low because most zero-shot learning models
rely on weak supervision with narrower guidance.

To address these issues, we propose a multi-model learning framework that connects
both text and image modalities based on contrastive learning and multi-label properties
(named MCLM) to learn shared representation spaces between text and image modalities
through an optimized multi-label feature matrix. Specifically, we construct correlation
matrices between text and images based on zero-shot learning mechanisms to solve the
alignment problem between text, images, and labels. We aim to optimize this latent rank-
ing matrix, where each row corresponds to images, each column corresponds to supporting
text prompt captions, and furthermore, we integrate multi-label weights for each value in
the matrix to rank label points corresponding to images and text. This allows us to focus
attention on matching points and support the prediction of dental caries effectively.

Our contributions are three folds and are summarized as follows:

• Novel methodology: We propose a multi-modal framework combining image fea-
tures and text features based on contrastive learning and multi-label techniques
(MCLM) to support the identification of dental caries.

• New dataset: We introduce a uniquely collected dataset focused on RGB image
data of dental caries, named P-Dental.

• Analysis and evaluation: We evaluate our multi-model approach in two ways:
based on contrastive learning, multi-label learning, and multi-feature learning. We
conduct evaluations on two datasets: one is a public dataset, and the other is a
uniquely collected dataset.

The remainder of this paper is structured as follows. Section 2 discusses relevant
previous studies. Section 3 presents our method. The experimental evaluation is shown
in Section 4. Finally, some concluding remarks and a brief discussion are provided in
Section 5.

2. Related works. In this section, we will examine some notable works on multi-modal
learning techniques, contrastive learning techniques, and multi-label techniques to support
the identification of dental caries in images, followed by a brief introduction to modern
works in the field of dental caries image recognition.

2.1. Multi-modal learning techniques. The combination of text-based and image-
based learning plays a crucial role in the field of image processing. Deep multi-modal
models [10, 11] typically involve training with diverse datasets. Additionally, few-shot
learning [12, 13] and zero-shot learning [14, 15] models have seen significant advance-
ments. For instance, CLIP [16] and FILIP [17] process image-text pairs to learn joint rep-
resentations. Numerous studies have demonstrated that combining multiple data sources,
or multi-modal training, yields high efficiency, such as in multi-modal object detection
[18] and multi-modal object segmentation [19]. In this research, we aim to develop a
multi-modal learning approach for the problem of dental caries detection using limited
image-text prompt pairs.
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2.2. Contrastive learning techniques. Contrastive learning with the key idea that
each class is assigned a target vector to represent features and learn in the most intuitive
way [20, 21]. Most contrastive learning problems rely on few-shot learning mechanisms
to optimize and find better target vectors [22, 23]. Alternative loss functions are often
proposed to modify the reference label distribution in contrastive learning, such as Mixup
[24], CutMix [25], or label smoothing [26]. Families of self-supervised representation
models use contrastive learning [27, 28]. In some studies [29, 30], several loss functions
based on metric learning have been proposed to learn robust representations. These loss
functions are typically trained on some auxiliary knowledge such as images related to
labels or frames from randomly selected videos, thus assuming that these approaches
yield a very low false negative rate.

2.3. Multi-label techniques. Multi-label classification is designed to serve the purpose
of categorizing with multiple class labels [31, 32]. Cheng et al. [33] employed GCN to
build and predict multi-labels. Zhang et al. [34] used multi-labels to learn attribute
features. The research team [35] incorporated Transformer into the multi-label problem
to focus on the dependencies of feature sets. Most multi-label problems aim to extract
as much label information as possible without resorting to conventional detection tasks,
which is also one of the main advantages of the multi-label method.

2.4. Discussion. The aforementioned methods offer advantages in the process of training
deep learning models. For instance, multi-model learning allows the model to understand
various data sources, correlation learning enables the model to train on limited data, and
multi-label learning helps us predict more labels and information. Therefore, we have
combined these methods to research and develop solutions for the problem of tooth decay
detection.

3. Material and methods.

3.1. MCML framework. The MCLM framework (illustrated in Figure 1) is proposed
to support the recognition of dental caries in the human mouth. At the beginning of
the diagram, the input is an image, and ResNet-101 is used as the backbone for feature
extraction. The features extracted from the Multi-label model are predicted into labels
and forwarded to the proposed loss function. The next step processes these features to
distinguish them.

The steps for distinguishing features are as follows: transforming the features into fea-
ture space, placing them into the workspace according to the object’s specific features
through localization and grouping, and finally ensuring class separation by constructing
class distance functions based on contrastive learning. We strive to build on multi-label
classification technology to learn the most intuitive representations for dental caries ob-
jects. The proposed loss function evaluates the features from the network’s multi-label
classes and distinguishes them within the specific feature spaces of each class. This allows
multi-label object analysis in the image to focus on key regions.

3.2. Multi-label model. Regarding the Multi-label model, we leverage the C-GCN
model [36] to perform multi-label training for the problem of dental caries recognition
in the human mouth. This model mainly comprises three blocks: the feature representa-
tion block, the multi-label learning block, and the multi-label score weighting block. The
feature representation block uses the ResNet-101 model as the backbone to extract image
features. The multi-label learning block is based on the GCN model [36], where we have
a set of potential labels in the image to learn the graph and train it to find the optimal
graph. The output of the multi-label learning block Ŷ is a matrix that represents the
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Figure 1. Our MCLM framework consists of two main components:
Multi-label model and Contrastive learning

relationships between the labels and supports classification for the corresponding labels,
also known as a correlation matrix. When this correlation matrix is multiplied by the
feature representation matrix, it produces a set of multi-label vectors, representing the
score weights of each label, meaning that labels likely to be present in the image will have
increased weights. This is the multi-label score weighting block. Naturally, the Multi-
label model also includes a loss function to evaluate the model’s effectiveness, which we
have named LM . The formulas for Ŷ are shown in equation (1).

Ŷ = Multi− label model(Image) (1)

3.3. Pre-processing Data. In this section, we describe the method for processing dis-
tinct feature data from the multi-label classification model. The proposed loss function,
LP , is based on features from the network’s multi-label classes and differentiates them
using class-specific attention maps. We consider a deep neural network model compris-
ing a feature extractor f and an object analyzer g. The function f , in conjunction with
g, extracts the correct features for the objects from the multi-label classifications of the
Multi-label model. A one-to-one and one-to-many mapping is constructed between f
and g. At this stage, we have not implemented many-to-many mappings due to resource
constraints and assume the model possesses all features of each class for prediction. This
mapping simplifies the task of object analysis and allows the separation of image features
according to multi-class representations. The formulas for f , g, and LP are shown in
equations (2), (3) and (4).

X = f(Image, θ) (2)

y = g(Ŷ , X, β) (3)

{β∗, θ∗} = argminθ,β(LP ) (4)

3.4. Working Space. To enhance the quality of dental caries recognition, we incorporate
contrastive representation learning [21]. This method aims to improve the linkage between
features and labels. Essentially, it involves constructing mappings from the feature space



Multi-modal tooth decay recognition based on Contrastive Learning and Multi-label 275

Table 1. Detailed information about the number
of images in the dataset P-Dental

Tooth decay labels Number of images
Level 1 495
Level 2 510
Level 3 483
Level 4 498
Level 5 429

to another embedding space (the working space) to enhance accuracy and effectiveness.
Transferring to an embedding space si helps reduce dimensionality while maintaining
contrast and linkage between features within the same label yj. Prediction in this context
will revert to being based on the probability of an active label. The loss function used to
evaluate the contrastive learning model in the working space is LS, show in equation (5).

LS =
L∑

j=1

K∑
i=1

(yjlogsi + (1− yj)log(1− si)) (5)

3.5. Loss function. To comprehensively evaluate the effectiveness of combining the
models, we construct an overall loss function (also known as the final loss) to assess
our entire model. Here, we have three loss functions: the multi-model loss, the data pro-
cessing loss, and the contrastive learning loss. Each loss function corresponds to a specific
model and task. The final loss will be the sum of these three loss functions, as shown in
equation (6).

Lfinal = LM + LP + LS (6)

4. Experiments. In this section, we detail the implementation of the proposed model for
detecting dental caries and the evaluation metrics on two datasets: ImageNet-mini [37] and
our dataset, P-Dental. We also compare our model with state-of-the-art methods through
quantitative and qualitative summary studies to analyze the superiority of the proposed
model. Additionally, we discuss experiments conducted to evaluate the effectiveness of
each module within the proposed model.

4.1. Dataset. In this work, two datasets are used for experimental evaluation: ImageNet-
mini [37] and P-Dental (a dataset we collected ourselves). These datasets are introduced
as follows.

ImageNet-mini contains 60,000 images with 100 different classes. Here, we only use
20,000 images with 10 classes to evaluate our model. We split the dataset into 60-20-20,
with 60% for training, 20% for validation, and 20% for testing.

P-Dental is a dataset of dental caries collected from a dental clinic in Hanoi, Vietnam,
with the permission of the Vietnamese ethics committee. The P-Dental dataset includes
2,415 images with 5 labels corresponding to different stages of dental caries. We collected
these images using mobile devices to photograph the patients’ oral cavities during dental
examinations. Detailed information about the dataset is presented in Table 1.

4.2. Performance metrics. To evaluate the performance of the proposed model, we use
the mean Average Precision (mAP) [38], which is a commonly used evaluation method
for supporting multi-label classification and dental caries detection. And calculate AP,
there are two methods: k-point interpolation and interpolation of all points.
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Table 2. Comparisons with state-of-the-art methods on the MS-COCO
and MLIC-Edu dataset.

Model ImageNet-mini P-Dental (our dataset)
CNN-RNN [43] 75.39 79.53

HCP [44] 76.74 81.62
RNN-Attention [45] 78.53 83.26

SSGRL [46] 80.68 85.92
BCE [47] 83.56 88.25

MCLM (ours) 85.65 89.28

AP =
1

k

∑
r

maxP (r̃) (7)

where P (r̃) is the precision at recall r̃ with r̃ > r.

4.3. Training setup. For our experiments, we use ResNet-101 [39] as the backbone for
feature extraction from the images. We employ the ReLU activation function [40] for
output results. During training, we utilize the Adam optimizer [41] with a learning rate
of 0.0001. The batch size is set to 64. For each input, we resize images of varying sizes
to 448x448, followed by data augmentation using PyTorch [42]. The label sets we use for
each dataset are fixed; for example, P-Dental consistently uses 5 labels for which we train
the GCN on these 5 labels.

4.4. Experiment setup. We design our extensive empirical study to answer the follow-
ing three key research questions (RQs):

• RQ1: How is the MCLM model better compared to other deep learning methods
with the same concept?

• RQ2: How does each situation in MCLM contribute to accurate deep learning?
• RQ3: How close is the prediction of the MCLM model to the ground truth?

In RQ1, we showcase the experiments conducted on the three foundational network
baselines. For RQ2, we carried out a total of three distinct scenarios. Furthermore, for
RQ3, we used the MCLM model to make predictions and provided some of the model’s
prediction results. The results will be averaged over experimental runs on two datasets.

4.5. Results and discussion.

4.5.1. Comparison With Four Baselines (RQ1). The comparison results with current
methods under the same constructed scenario are presented in Table 2. It can be seen
that representation learning through contrastive learning combined with a multi-label
model yields superior results compared to basic methods and some of the latest modern
methods. Moreover, the proposed method also significantly outperforms all methods in
the previous rows. The MCLM model shows a relatively high improvement in average
precision (mAP) by 2-3% compared to basic methods. This is achieved due to its ability
to understand image features as well as multi-label characteristics, thereby integrating
and enhancing efficiency and performance.
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Table 3. The results of five experiments are presented.

Model ImageNet-mini P-Dental (our dataset)
MCLM (ours) 85.65 89.28

- Multi-label model 81.32 84.93
- branch Pre-processing Data 83.43 85.79

- Contrastive learning 82.56 84.23

4.5.2. Applicability to Scenarios (RQ2). The results comparing the effectiveness when
adding modules and the feasibility of each module are shown in Table 3. Firstly, if the
multi-label model module is removed, resulting in the model lacking multi-label features,
the accuracy decreases by 4-5%, which clearly indicates the importance of multi-label
features. Secondly, if the data processing step from the multi-label stage is omitted,
the model’s accuracy also decreases, as this process helps the model understand multi-
labels and enhances the features supporting the recognition process. Lastly, removing the
contrastive learning module significantly reduces the model’s accuracy because this step
supports the efficient linking of features through the Working Space and enhances the
model’s recognition capability.

Figure 2. Predictions of the proposed method (MCLM).

4.5.3. Qualitative study (RQ3). We conducted experiments on the test set to visualize
the model’s prediction results on the P-Deltal set, as shown in Figure 2. The first row
represents a symbolic example with the associated cavity severity labels. The second
row shows the prediction results for each label, aligned with the columns of the symbolic
example above. From this visualization, it is evident that the model performs quite
well. Although the difficulty of this classification task is fairly high, the ability to learn
based on features and multi-labels has supported the model’s accurate predictions. The
confusion between cavities at level 2 and level 3 is minimal but still constitutes a significant
percentage. Meanwhile, levels 1, 4, and 5 are clearly distinct in terms of features, resulting
in almost no prediction errors. Overall, the proposed model achieves stable performance.

5. Conclusions. In summary, to support the identification of cavities in humans, chal-
lenges such as low-resolution images and the difficulty of recognizing cavities in the oral
cavity have motivated us to improve image recognition methods. Leveraging the advan-
tages of multi-label and contrastive learning, we have skillfully combined them to enhance
the accuracy of cavity identification. Building contrastive learning frameworks based on
multi-labels helps effectively map image features to label features. We also integrated the
loss functions of each module to comprehensively improve accuracy. Our proposed MCLM
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model is advanced, demonstrating superiority in experimental results. Additionally, we
collected data on cavities named P-Deltal. However, the MCLM model has drawbacks in
prediction latency and performs well with small datasets. Therefore, we plan to improve
and overcome these two drawbacks in future research.
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