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Abstract. Adversarial attacks pose significant challenges to intrusion detection sys-
tems (IDS) by exploiting vulnerabilities in machine learning models. This study proposes
an innovative framework, DDM-CNN, which integrates an enhanced density metric for
Out-of-Distribution (OOD) detection with Incremental Learning to address these threats.
Adversarial datasets were generated using Conditional Tabular GAN (CTGAN) to evalu-
ate the robustness of the model against challenging attack scenarios. Experimental results
on CICIDS2017 and CICDDoS2019 datasets demonstrate the superiority of DDM-CNN,
achieving F1 Scores of 0.996 and 0.997 for normal data and 0.9379 and 0.9683 for adver-
sarial data, respectively. The model outperformed baseline approaches, including CNN,
RNN, MLP, and AE, in terms of accuracy and resilience. This framework highlights
the importance of advanced OOD detection metrics and adaptive learning mechanisms
in fortifying IDS against evolving adversarial threats.
Keywords: Adversarial Attack, Incremental Learning, Enhanced Density Metrics, In-
trusion Detection Systems, CTGAN, OOD

1. Introduction. The exponential growth of cyber threats has transformed network
security into a critical area of research, particularly in the context of machine learning
applications. Intrusion detection systems (IDS) powered by machine learning have shown
remarkable success in identifying malicious activities across diverse network environments.
However, adversarial attacks remain a significant challenge, exploiting the vulnerabilities
of machine learning models by crafting malicious inputs to evade detection and compro-
mise system integrity [1]. These attacks not only undermine the reliability of IDS but
also highlight the need for more resilient defense mechanisms that can adapt to rapidly
evolving threats. Adversarial data, often generated using advanced techniques like Con-
ditional Tabular GANs (CTGAN), is specifically designed to deceive machine learning
models by mimicking legitimate patterns while embedding malicious intent [2]. Detecting
such data is critical to maintaining the reliability of IDS in real-world scenarios. Out-
of-Distribution (OOD) detection has emerged as a promising approach to identify such
anomalies by recognizing inputs that deviate from the established data distribution [3].
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Despite this potential, traditional OOD detection methods face challenges in scalability
and accuracy, particularly when dealing with high-dimensional network data [4].

To address these limitations, this paper introduces a novel defense framework that
combines an improved density-based metric for OOD detection with incremental learn-
ing. The proposed density metric enhances the ability to distinguish between adversarial
and legitimate inputs, while the incremental learning framework allows continuous model
updates with newly labeled OOD data. This approach ensures the adaptability of the
model without requiring costly retraining on the entire dataset [5]. Furthermore, the
integration of CTGAN-generated adversarial samples provides a robust testing ground
for evaluating the effectiveness of the proposed framework under realistic attack scenar-
ios. The framework is evaluated on two widely recognized datasets, CICIDS2017 and
CICDDoS2019, which encompass a comprehensive range of attack types, including Dis-
tributed Denial-of-Service (DDoS), brute force, and web attacks [6]. Comparative analysis
with baseline models Convolutional Neural Networks (CNN), Recurrent Neural Networks
(RNN), Multilayer Perceptrons (MLP), and Autoencoders demonstrates that the pro-
posed method significantly outperforms these approaches in terms of accuracy, resilience,
and the ability to adapt to adversarial inputs.

The rest of this paper is structured as follows: Section 2 provides an overview of related
work on adversarial attack defenses and OOD detection. Section 3 details the proposed
methodology, including the CTGAN-based adversarial data generation, the improved den-
sity metric, and the incremental learning framework. Section 4 presents the experimental
setup and results, including comparisons with baseline models. Section 5 gives a deep
discussion on experiment ressults. Finally, Section 6 concludes the paper and discusses
potential directions for future research.

2. Related Works.

2.1. Advancements in AI for DDoS Attack Detection. The rising complexity and
frequency of DDoS attacks have prompted significant advancements in artificial intel-
ligence (AI)-based detection mechanisms. Traditional methods often struggle to cope
with the dynamic and large-scale nature of these attacks, making AI-powered solutions
increasingly essential for maintaining network security.

Machine learning (ML) techniques have been a primary focus in DDoS detection. Su-
pervised learning models, such as decision trees and ensemble methods, have shown ef-
fectiveness in analyzing traffic patterns and distinguishing legitimate traffic from attack
traffic [7]. Ensemble methods like Gradient Boosting and Random Forest are particularly
noted for their ability to handle large, imbalanced datasets commonly found in network
traffic logs [8]. Deep learning (DL) approaches further enhance DDoS detection capabili-
ties by modeling complex, non-linear patterns in data. Long Short-Term Memory (LSTM)
networks, for instance, excel at capturing temporal dependencies in sequential data, mak-
ing them suitable for identifying the gradual buildup of DDoS attacks [9]. Additionally,
autoencoders, particularly LSTM-based ones, are widely used for anomaly detection by
learning normal network behavior and flagging deviations as potential threats [10]

Generative Adversarial Networks (GANs) have emerged as powerful tools in improving
DDoS detection. By generating synthetic adversarial samples, GANs enable models to
train on diverse attack scenarios, enhancing their robustness and generalization capabil-
ities [11]. This approach allows for better preparation against previously unseen attack
strategies, a critical aspect of modern network defense systems.Hybrid models combining
ML and DL techniques have also been developed to leverage their respective strengths.
For example, models integrating CNN with LSTM networks can extract both spatial and
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temporal features, achieving improved accuracy in classifying network traffic [12]. Such
hybrid approaches are particularly effective in capturing the multi-faceted nature of DDoS
attacks.

AI-based solutions have demonstrated particular success in Software Defined Network-
ing (SDN) environments. By leveraging the centralized control and programmability of
SDNs, AI algorithms can rapidly analyze traffic flows and detect abnormal patterns indica-
tive of DDoS attacks [13]. This capability allows for real-time detection and mitigation,
making AI an indispensable tool in modern network security frameworks.Despite these
advancements, challenges remain. Key issues include the need for large labeled datasets,
the susceptibility of AI models to adversarial attacks, and the computational overhead
of real-time processing. Addressing these challenges requires ongoing research into un-
supervised and semi-supervised learning techniques, the development of robust models
resistant to adversarial perturbations, and the optimization of computational efficiency.
AI has profoundly transformed the field of DDoS detection, offering innovative solutions
that surpass traditional methods. The integration of ML, DL, and GAN-based techniques
has significantly enhanced detection accuracy and adaptability, paving the way for more
resilient and scalable network defenses. Future advancements in AI research hold the
promise of further fortifying defenses against the evolving landscape of cyber threats.

2.2. Challenges of Adversarial DDoS Attacks. Adversarial DdoS attacks represent
a significant evolution in the tactics used by attackers to compromise network systems.
These attacks leverage adversarial machine learning techniques to craft malicious inputs
that are specifically designed to evade detection by traditional and machine learning-based
IDS. By introducing imperceptible perturbations to malicious traffic, adversarial DDoS
attacks make it difficult for models to distinguish between legitimate and harmful traffic,
thereby exploiting vulnerabilities in detection mechanisms [14].

GAN have emerged as a prominent tool in the synthesis of adversarial DDoS attack
data. These networks are capable of generating high-quality synthetic traffic that mimics
the statistical properties of legitimate network flows while embedding malicious intent.
Recent work has demonstrated the use of CTGAN and Wasserstein GANs (WGANs)
with Gradient Penalty to create adversarial traffic that bypasses conventional detection
methods [15]. These advanced models have shown that even state-of-the-art intrusion
detection systems can be effectively deceived when exposed to such adversarial data [16].
The adaptive nature of adversarial DDoS attacks presents a dynamic challenge for network
defense. Standard IDS often rely on static rule-based systems or pre-trained models,
which lack the ability to adapt to new and evolving attack patterns. This limitation is
particularly concerning as adversarial techniques continue to become more sophisticated,
leveraging advancements in AI to stay ahead of defensive measures [17].

To counter these threats, researchers have proposed various approaches, including ad-
versarial training and the use of hybrid detection frameworks. Adversarial training in-
volves exposing detection models to adversarially crafted samples during the training
process, thereby improving their resilience to such inputs. However, while adversarial
training can enhance robustness, it often requires extensive computational resources and
large labeled datasets, which can limit its scalability in real-world applications [18]. Hy-
brid detection frameworks, combining traditional machine learning algorithms with deep
learning models, have also shown promise. For instance, integrating LSTM networks with
CNN enables systems to capture both temporal and spatial features in network traffic,
making them more effective against adversarial DDoS attacks [19]. Additionally, the use
of dual-discriminator GANs (GANDD) has been explored to simultaneously generate and
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detect adversarial traffic, creating a more dynamic and comprehensive defense mechanism
[20].

Despite these advancements, there remain critical challenges in detecting and mitigating
adversarial DDoS attacks. The ability of these attacks to mimic legitimate traffic patterns
with high fidelity complicates the task of distinguishing between normal and malicious
flows. Furthermore, as adversarial techniques evolve, the risk of generalization errors in
detection systems increases, potentially leading to higher rates of false positives and false
negatives [21]. These challenges highlight the need for continued innovation in adversarial
defense strategies, with a focus on developing more adaptive and scalable solutions capable
of addressing the rapidly changing threat landscape.

2.3. Open-Set Recognition in Machine Learning. Open-Set Recognition (OSR) ad-
dresses the challenge where models must accurately classify known classes while effectively
identifying and managing instances from unknown classes not encountered during train-
ing. This paradigm reflects real-world scenarios where the assumption that all possible
classes are known a priori is impractical. Traditional closed-set classification systems op-
erate under the premise that all test instances belong to predefined categories, leading
to potential misclassification when novel classes are introduced. OSR mitigates this issue
by enabling models to detect and appropriately handle previously unseen classes, thereby
enhancing robustness and reliability in dynamic environments. Recent advancements in
OSR have focused on integrating probabilistic generative models to improve the detection
of unknown classes. For instance, Conditional Probabilistic Generative Models (CPGM)
have been proposed to incorporate discriminative information, allowing for the effective
identification of both known and unknown classes. These models force latent features
to approximate conditional Gaussian distributions, facilitating more accurate recognition
outcomes [22].

Another significant development is the application of meta-learning techniques to OSR.
The PEELER algorithm exemplifies this approach by employing random selection of novel
classes per episode and maximizing posterior entropy for those classes. This method en-
hances the model’s ability to generalize from limited data, thereby improving its capacity
to recognize and appropriately respond to unknown classes [23]. Hybrid models have also
been explored to address the complexities of OSR. By combining discriminative classifiers
with generative models, these hybrid systems aim to jointly learn representations that
are effective for both classifying known categories and detecting unknown instances. This
dual capability is crucial for applications requiring high reliability in the presence of un-
foreseen data [24]. Despite these advancements, OSR remains a challenging field due to
the inherent unpredictability of unknown classes and the need for models to balance sen-
sitivity and specificity. Ongoing research continues to explore innovative methodologies
to enhance the efficacy of open-set recognition systems.

2.4. Density Metric for Out-of-Distribution Detection. The development of met-
rics to assess OOD data has evolved significantly, driven by advancements in machine
learning and the increasing need for robust detection methods. One of the earliest ap-
proaches focused on evaluating generative models through single-score metrics like the
Fréchet Inception Distance (FID), which became widely used for comparing the distribu-
tions of real and generated data. FID offered insights into the quality of data synthesis
but had limitations in addressing fidelity and diversity trade-offs [25]. Recognizing these
shortcomings, subsequent research introduced dual metrics, notably precision and recall,
to disentangle fidelity (the quality of generated samples) from diversity (the extent to
which the generative model covers the variability of real data). However, these metrics
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faced practical limitations, including sensitivity to outliers and dependency on hyperpa-
rameter settings. To mitigate these issues, improved methods like k-nearest neighbors
(k-NN) based evaluation were proposed, enhancing robustness against noise and better
capturing the nuances of data distributions [26]. Building on these advancements, den-
sity and coverage metrics emerged as more reliable alternatives. These metrics addressed
critical flaws in earlier methods by redefining neighborhood-based estimations. Density
measures the concentration of generated samples within regions densely populated by real
data, offering insights into fidelity, while coverage quantifies the proportion of real data
distribution covered by the generated samples, emphasizing diversity. This dual approach
provided a more comprehensive evaluation framework for generative models and their
OOD handling capabilities [27].

In the context of adversarial and open-set recognition tasks, density-based methods have
been pivotal. Recent studies have utilized density estimations to enhance the detection of
OOD instances by measuring the likelihood of data points against known distributions.
By leveraging these metrics, researchers have been able to distinguish in-distribution and
OOD samples with greater accuracy, showcasing the utility of density-driven frameworks
in security-sensitive applications. Building upon this foundation, our study proposes an
upgraded density metric specifically tailored for detecting unknown data in DDoS attack
scenarios. This metric enhances the precision of OOD identification by incorporating
novel generative techniques and optimizing neighborhood estimations, thereby addressing
gaps in existing detection frameworks.

3. Methodology. In this section, we outline the framework developed to address the
challenges of adversarial data and OOD detection in network defense systems. The
proposed methodology is designed to systematically construct adversarial datasets and
enhance classification models through innovative techniques.

First, a robust adversarial dataset is generated using CTGAN based on two compre-
hensive and diverse original datasets: CICIDS2017 and CICDDoS2019. These datasets
serve as a foundation for simulating realistic attack scenarios. The adversarial dataset is
then used to evaluate the defensive capabilities of prominent deep learning architectures,
ensuring the assessment of model robustness under adversarial conditions.

Second, the study introduces a novel classification framework that incorporates an up-
graded version of the Density metric. This advanced metric is integrated with incremental
learning techniques, allowing the model to adapt dynamically to newly identified OOD
data. This combination enables the classifier to not only detect adversarial data effectively
but also improve its accuracy over time without requiring extensive retraining.

The subsequent sections detail the implementation of these steps, including the adver-
sarial data generation process, the integration of the enhanced Density metric, and the
incremental learning mechanism. These components collectively contribute to a robust
and adaptive defense model designed to tackle evolving adversarial threats in network
environments.

3.1. CTGAN.
CTGAN is a specialized generative model designed to address the challenges of synthesiz-
ing realistic tabular data, particularly when dealing with highly imbalanced categorical
distributions and non-Gaussian continuous features. The workflow of CTGAN, illustrated
in the provided diagram, integrates conditional data generation and training strategies
to ensure high fidelity and diversity in generated data. At its core, CTGAN utilizes
mode-specific normalization, a conditional generator, and the Wasserstein GAN with
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Gradient Penalty (WGAN-GP) framework. To tackle the challenges of modeling continu-
ous features, CTGAN employs mode-specific normalization, which leverages a Variational
Gaussian Mixture Model (VGM). This approach segments each continuous column into
multiple modes, each represented by a Gaussian distribution. For a continuous variable
Ci with observed values ci,j, the probability density function is modeled as:

PCi
(ci,j) =

m∑
k=1

πkN (ci,j;µk, σ
2
k), (1)

where πk represents the weight of the k-th mode, and N (c;µk, σ
2
k) is the Gaussian dis-

tribution with mean µk and variance σ2
k. This normalization ensures that both global

distribution characteristics and local variations are preserved, enabling the generator to
produce continuous features that align with the original data distribution.

The core of CTGAN is its conditional generator, which allows data generation con-
ditioned on specific categories of a discrete column. Given a dataset X, let Di be a
categorical column with categories di,1, di,2, . . . , di,k. During training, a category di,k is
randomly selected, and rows where Di = di,k are used to construct a conditional vec-
tor c. For the generator G, this condition vector c is concatenated with a noise vector
z ∼ N (0, I) to form the input:

xfake = G([z, c]), (2)

where G is implemented as a series of fully connected layers interleaved with batch
normalization and activation functions.

To address the issue of class imbalance in categorical data, CTGAN introduces a
training-by-sampling strategy. A categorical column Di is selected, and a category di,k is
sampled according to a probability mass function P (Di = di,k), which is calculated as:

P (Di = di,k) =
log(freq(di,k) + 1)∑K
j=1 log(freq(di,j) + 1)

, (3)

where freq(di,k) represents the frequency of category di,k in the dataset. This ensures
balanced training by prioritizing underrepresented categories, preventing the generator
from collapsing to dominant classes.

LC = Exreal∼Pdata
[C(xreal, c)]− Exfake∼PG

[C(xfake, c)] , (4)

with a gradient penalty term:

LGP = λEx̂∼Px̂

[
(∥∇x̂C(x̂)∥2 − 1)2

]
, (5)

where x̂ is sampled uniformly along straight lines between real and generated samples.
The total loss for the critic enforces the Lipschitz constraint and stabilizes training:

Ltotal = LC + LGP . (6)

Figure 1 depicts the overall workflow of CTGAN. A categorical column D is selected,
and a specific category is sampled. The corresponding rows from the dataset are used to
construct the conditional vector c, which is then concatenated with noise z to generate
synthetic data via the generator G. The critic C evaluates the synthetic samples against
real data and provides feedback to refine G.
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Figure 1. The architecture and workflow of CTGAN.

In this study, CTGAN is employed to generate adversarial datasets based on CI-
CIDS2017 and CICDDoS2019, enabling the evaluation of an upgraded Density met-
ric. This enhanced metric is specifically designed to improve the detection of out-of-
distribution data in network defense scenarios, demonstrating the practical applicability
of CTGAN-generated data in real-world security challenges.

3.2. Enhanced Density Metric. Building on the advancements of density-based met-
rics for OOD detection, we introduce the Distance Density Metric (DDM) that refines
traditional approaches by introducing a distance-weighted contribution mechanism. Un-
like prior methods that treat all neighbors equally, DDM prioritizes neighbors closer to
the evaluation point, ensuring that high-density regions are emphasized while mitigat-
ing the influence of sparsely distributed points and outliers. This enhancement allows
for more precise OOD identification, particularly in high-dimensional and noisy datasets.
The DDM is mathematically expressed as:

DDM =
1

M

M∑
j=1

N∑
i=1

1
Yj∈B(Xi,NNk

D
(Xi))

1 + dist(Yj, Xi)
(7)

where M is the number of known (in-distribution) samples {Yj}, N represents the
number of unknown samples Xi, and dist(Yj, Xi) is the Euclidean distance between a
known sample Yj and an unknown sample Xi. The indicator function 1Yj∈B(Xi,NNk

D(Xi))

evaluates to 1 if Yj belongs to the k-nearest neighbors of Xi within the known data
distribution and 0 otherwise. The set B(Xi, NNk

b (Xi)) denotes the k-nearest neighbors
of Xi in the known data Yj, determined by a chosen distance metric.

This metric enhances OOD detection by weighting each neighbor’s contribution in-
versely to its distance from the evaluation point. The denominator 1+dist(Yj, Xi) ensures
closer neighbors exert greater influence, while distant ones contribute less, improving sen-
sitivity to local data variations and robustness against noise. Applying DDM involves
finding the k-nearest neighbors of each unknown sample Xi from the known samples Yj,
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computing distances, and weighting contributions. The aggregated result captures lo-
cal density structures, making it effective for OOD detection. By incorporating distance
weighting, DDM reduces outlier impact and better represents local densities, addressing
challenges in adversarial and high-dimensional datasets where traditional metrics often
fail. Integral to the proposed framework, DDM enables precise OOD identification in
CTGAN-generated adversarial datasets and, combined with incremental learning, en-
hances model robustness and adaptability for advanced network defense.

3.3. Proposed Model. The proposed model, referred to as DDM-CNN and illustrated
in Figure 2, combines the DDM with a CNN-based classifier and incremental learning to
enable robust OOD detection and continuous adaptability. The workflow is composed of
multiple components, including data preprocessing, anomaly detection via DDM, classi-
fication through a CNN model, and iterative updating using expert feedback.

Figure 2. Workflow of the proposed model.

The process begins with data preprocessing, where the raw dataset X undergoes clean-
ing, normalization, and feature extraction to produce structured data suitable for analysis.
The preprocessed samples are then evaluated using DDM, defined in Formula (1). DDM
evaluates each sample’s density relative to the known data, assigning higher scores to
samples closer to dense regions of the distribution. Samples with DDM(Xi) ≥ τ (where τ
is a predefined threshold) are passed to the CNN classifier, while those below the threshold
are flagged as potential anomalies.

The CNN classifier receives samples passing the DDM threshold and categorizes them
as either normal or malicious. The classifier is trained using cross-entropy loss:

LCNN = − 1

N

N∑
i=1

C∑
c=1

yi,c log ŷi,c, (8)

where yi,c and ŷi,c denote the true and predicted labels for class c, respectively. The
CNN’s predictions are then validated or refined through a feedback loop involving expert
tagging.

Incremental learning is applied to integrate new knowledge without retraining the entire
model from scratch. Samples identified as anomalies are reviewed and labeled by a data
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expert. These newly labeled samples Xnew are added to the dataset, and the CNN is
updated incrementally. The optimization during incremental learning is defined as:

Lincremental = LCNN + λ ∥Wnew −Wold∥2 , (9)

whereWnew andWold represent the updated and previous model weights, and λ controls
the trade-off between retaining old knowledge and learning new information.

The iterative feedback loop ensures the continuous improvement of the model by in-
corporating expert-labeled anomalies, enabling adaptability to dynamic changes in the
data. This integration of DDM with incremental learning allows for precise OOD detec-
tion and efficient model updates, providing a robust solution for evolving network defense
challenges.

4. Experiment and Results.

4.1. Dataset. In this study, the evaluation of our IDS was conducted using two datasets:
CICIDS2017 and CICDDoS2019. Both datasets, developed by the Canadian Institute for
Cyber Security (CIC), are widely recognized in the cybersecurity field. Their purpose
is to replicate real-world network activities and various cyberattack scenarios in a con-
trolled environment. These datasets include genuine traffic data combined with network
configurations, providing a comprehensive setup for examining IDS effectiveness, refining
algorithms, and extracting key features.

The CICIDS2017 dataset contains traffic data recorded on Wednesday and Friday, offer-
ing a blend of benign and malicious network activities. On Wednesday, it includes 319,186
benign packets (64.26%) and 159,049 packets from DoS Hulk attacks (32.021%), along
with smaller volumes of attacks such as DoS GoldenEye (7,647 packets), DoS Slowloris
(5,071 packets), and DoS Slowhttptest (5,109 packets). Additionally, 11 packets are re-
lated to the HeartBleed vulnerability. On Friday, the dataset logs 128,027 benign packets
(56.713%) and 97,718 packets corresponding to DDoS attacks (43.287%).

The CICDDoS2019 dataset, on the other hand, focuses on DDoS attacks and other
network threats. A notable example is the LDAP attack, which includes 2,179,928 packets
(99.927%) compared to only 1,602 benign packets (0.073%). Other prominent attacks
recorded in the dataset are MSSQL (5,071,002 packets), NetBIOS (4,093,273 packets),
and UDP (3,134,643 packets), with additional records for NTP and SYN attacks.

These datasets form a crucial basis for training, validating, and benchmarking IDS
models. They also enable researchers to compare the performance of various detection
algorithms, refine feature selection methods, and test the robustness of IDS models under
different conditions.

4.2. Evaluation Metrics. In machine learning, evaluation metrics are critical tools for
determining the effectiveness of a model and assessing its efficiency. They provide a
structured way to analyze and compare model performance under specific challenges and
tasks. In this research, several key metrics were utilized to evaluate the proposed model:

Accuracy (Acc): This metric calculates the proportion of correct predictions made by
the model out of the total number of predictions. It gives an overall sense of the model’s
performance in distinguishing between classes.

Precision (Prec): Precision measures the ratio of true positive predictions to the total
number of positive predictions made by the model, indicating how many of the predicted
positives were actually correct.

Recall: Also known as sensitivity, recall measures the proportion of actual positive
instances correctly identified by the model, reflecting its ability to capture relevant positive
cases.
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F1 Score (F1): The F1 score is the harmonic mean of precision and recall, providing a
balanced evaluation by considering both false positives and false negatives. This metric
is particularly useful when the dataset has imbalanced class distributions.

The mathematical formulations for these metrics are presented below:

Accuracy =
TP + TN

TP + FP + TN + FN
, (10)

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1Score =
2× Precision×Recall

Precision+Recall
, (13)

where: TP represents the number of true positive predictions, TN represents the num-
ber of true negative predictions, FP represents the number of false positive predictions,
FN represents the number of false negative predictions.

4.3. Experiment Environments. For this research, the experiments were conducted
on a Windows 11 system equipped with a high-performance configuration to facilitate
efficient model training and evaluation. The system is powered by an Intel Core i7-
14700F processor with 20 cores and a turbo boost of up to 5.4 GHz, paired with 64 GB
of DDR5 G.Skill Trident Z5 RAM (5600 MHz). Graphics processing was handled by an
NVIDIA GTX 4070, ensuring smooth execution of computationally intensive tasks.

The framework employed for implementation and evaluation included PyTorch 2.0.1
+ cu118 for model construction and Sklearn 1.3.0 for performance metric computation.
Python 3.9 was utilized for programming and testing. To ensure robust results, ten train-
ing iterations were conducted, each with a different random seed to introduce variability
in the training process. The Adam optimizer was chosen to improve the learning efficiency
of the model. Detailed configurations and parameter settings are outlined in Table 1 and
Table 2.

Table 1. CNN Classifier configuration

Layer Configuration
Input (None, 1, 9, 9)
Conv2D (None, 120, 9, 9)
Dropout (None, 120, 9, 9)
Conv2D (None, 60, 9, 9)
Dropout (None, 60, 9, 9)
Conv2D (None, 30, 9, 9)
Dropout (None, 30, 9, 9)
Flatten (None, 2430)
Dense (None, 1)
Dropout (None, 1)
Dense (None, 1)
Sigmoid (None, 1)
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Table 2. Training parameter settings system.

Parameters Value
Learning Rate 0.0001
Weight Decay 0.0003
Optimizer Adam
Batch Size 1024
Training Split Ratio 0.7 training, 0.3 testing
DDM Threshold 0.9
Random Seeds 2, 16, 32, 104, 587, 1023, 1502, 2041, 3412,

4105, 5213, 6512, 7103, 8245, 9013, 99532

4.4. Evaluation Results on Coventional Attack. Building on the evaluation frame-
work, the proposed DDM-CNN model was compared against four widely recognized base-
line models CNN, RNN, MLP, and AE on the CICIDS2017 and CICDDoS2019 datasets.
Each baseline was chosen for its established relevance to network intrusion detection.
CNN, implemented by Halbouni et al. [28] in 2022, utilize spatial feature extraction
to detect malicious traffic effectively. Recurrent Neural Networks (RNN), employed by
Ibrahim and Elhafiz [29] in 2023, excel at modeling sequential patterns, making them
suitable for detecting time-dependent attacks. Multilayer Perceptrons (MLP), optimized
by Ali et al. [30] in 2024 offer robust classification with improved computational effi-
ciency. Autoencoders (AE), as applied by Singh and Jang-Jaccard [31] in 2022, leverage
reconstruction-based anomaly detection to identify deviations in network behavior. The
evaluation results are summarized in Table 3 and Table 4, which present the performance
metrics for CICIDS2017 and CICDDoS2019, respectively.

Table 3. Performance Metrics on CICIDS2017

Model Accuracy Precision Recall F1 Score
CNN [28] 0.944 0.945 0.941 0.943
RNN [29] 0.933 0.935 0.932 0.933
MLP [30] 0.912 0.895 0.921 0.893
AE [31] 0.880 0.885 0.881 0.883
DDM-CNN 0.9971 0.9927 0.9994 0.996

Table 4. Performance Metrics on CICDDoS2019

Model Accuracy Precision Recall F1 Score
CNN [28] 0.954 0.955 0.951 0.953
RNN [29] 0.943 0.945 0.942 0.944
MLP [30] 0.922 0.905 0.931 0.913
AE [31] 0.890 0.895 0.891 0.893
DDM-CNN 0.9994 0.9999 0.9995 0.997

These results clearly illustrate the superior performance of the proposed DDM-CNN
model compared to the baseline models. For CICIDS2017, DDM-CNN achieved the
highest F1 Score of 0.996, significantly outperforming CNN (0.943), RNN (0.933), MLP
(0.893), and AE (0.883). Similarly, on CICDDoS2019, DDM-CNN recorded an F1 Score
of 0.997, demonstrating its capability to generalize effectively across datasets while main-
taining robust performance.
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4.5. Evaluation Results on Adversarial Attack. To further evaluate the robust-
ness of the proposed DDM-CNN model, experiments were conducted using adversarial
datasets generated by CTGAN. This technique generates synthetic adversarial samples
by mimicking the underlying data distribution while introducing perturbations that create
challenging scenarios for intrusion detection. The adversarial datasets were derived from
CICIDS2017 and CICDDoS2019, representing diverse and complex network threats. The
evaluation results, summarized in Table 5 and Table 6, demonstrate the effectiveness of
the proposed model in handling these adversarial challenges, significantly outperforming
baseline models.

Table 5. Performance Metrics on Adversarial Data from CICIDS2017

Model Accuracy Precision Recall F1 Score
CNN [28] 0.1823 0.1917 0.1774 0.1844
RNN [29] 0.1715 0.1832 0.1598 0.1709
MLP [30] 0.1532 0.1628 0.1375 0.1489
AE [31] 0.1029 0.1125 0.0963 0.1038
DDM-CNN 0.9123 0.9095 0.9681 0.9379

Table 6. Performance Metrics on Adversarial Data from CICDDoS2019

Model Accuracy Precision Recall F1 Score
CNN [28] 0.1867 0.1983 0.1851 0.1916
RNN [29] 0.1764 0.1876 0.1614 0.1728
MLP [30] 0.1624 0.1736 0.1428 0.1556
AE [31] 0.1417 0.1513 0.1389 0.1449
DDM-CNN 0.9694 0.9978 0.9405 0.9683

The results in Table 5 and Table 6 clearly demonstrate the superior performance of the
proposed DDM-CNN model when tested against adversarial data. Notably, the DDM-
CNN achieved an F1 Score of 0.9379 on CICIDS2017 adversarial data, significantly sur-
passing the baseline models such as CNN (0.1844), RNN (0.1709), MLP (0.1489), and
AE (0.1038). Similarly, on CICDDoS2019 adversarial data, DDM-CNN recorded an F1
Score of 0.9683, which is far above the baseline models. These finding emphasize two
key points: First, CTGAN-generated adversarial datasets create realistic and challeng-
ing scenarios, highlighting the need for robust detection. Second, the integration of the
DDM-based OOD detection metric with Incremental Learning enhances adaptability and
ensures superior performance, establishing DDM-CNN as a strong framework for adver-
sarial intrusion detection.

5. Discussion. The evaluation results across the four datasets (CICIDS2017 and CICD-
DoS2019 with both normal and adversarial data) provide a comprehensive insight into
the performance of the proposed DDM-CNN model. The results, summarized in Tables 3
and 4 for normal data, demonstrate that DDM-CNN consistently outperforms all baseline
models. Notably, the F1 Scores of 0.996 and 0.997 for CICIDS2017 and CICDDoS2019,
respectively, underline the model’s robustness in distinguishing legitimate traffic from
network intrusions. Tables 5 and 6 extend the analysis to adversarial datasets generated
using CTGAN. These adversarial datasets were intentionally crafted to mimic realistic
attack patterns, creating significantly more challenging detection scenarios. Despite this,
DDM-CNN continues to achieve remarkably high performance, with F1 Scores of 0.9379
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for CICIDS2017 and 0.9683 for CICDDoS2019. In contrast, the baseline models: CNN,
RNN, MLP, and AE struggle significantly under adversarial conditions, highlighting their
vulnerability. These results emphasize the robustness of DDM-CNN, particularly in han-
dling adversarial attacks that exploit traditional classifiers’ weaknesses.

The use of CTGAN to generate adversarial data highlights the strength of such attacks
in challenging the reliability of intrusion detection systems. Adversarial samples closely
mimic the original data distribution while introducing subtle perturbations, making detec-
tion significantly harder. The drop in performance for baseline models across adversarial
datasets further underscores this point, demonstrating the ability of adversarial attacks
to exploit vulnerabilities in conventional network defenses.

The superior performance of DDM-CNN is further amplified when coupled with the en-
hanced Density-based OOD detection mechanism. With a threshold set at 0.9, the model
effectively filters out potential anomalies before classification. This threshold selection
allows DDM-CNN to maintain a high true positive rate while minimizing false positives.
The incremental learning component further ensures adaptability, enabling the model to
refine itself continuously as new adversarial patterns emerge. This dynamic integration
of DDM and incremental learning solidifies DDM-CNN’s position as a robust framework
for intrusion detection.

Figures 3 and 4 present the Receiver Operating Characteristic (ROC) curves for ad-
versarial datasets derived from CICIDS2017 and CICDDoS2019, respectively. The Area
Under the Curve (AUC) scores offer a detailed perspective on the detection capabilities
of DDM-CNN compared to baseline models.

Figure 3. ROC curve for adversarial data on CICIDS2017.

For both datasets, DDM-CNN achieves AUC scores of 0.9810 (Figure 3) and 0.9992
(Figure 4), demonstrating its near-perfect ability to distinguish between normal and ad-
versarial traffic. In contrast, baseline models such as CNN, RNN, MLP, and AE exhibit
significantly lower AUC scores, reflecting their susceptibility to adversarial perturbations.
The steep initial rise in the ROC curves of DDM-CNN indicates a high true positive
rate at low false positive rates, affirming its reliability in real-world applications. The
comparison across Figures 3 and 4 also highlights a consistent pattern: while DDM-CNN
maintains exceptional performance across both datasets, baseline models exhibit varying
degrees of degradation under adversarial conditions. This disparity underscores the effec-
tiveness of the proposed model in mitigating adversarial threats, a critical requirement
for modern intrusion detection systems.
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Figure 4. ROC curve for adversarial data on CICDDoS2019.

6. Conclusion. This study presented a robust intrusion detection framework, DDM-
CNN, which integrates an enhanced Density-based OOD detection metric with Incre-
mental Learning. The model demonstrated exceptional performance on both normal and
adversarial datasets derived from CICIDS2017 and CICDDoS2019. By leveraging ad-
versarial data generated using CTGAN, the evaluation highlighted the vulnerabilities of
traditional deep learning models such as CNN, RNN, MLP, and AE, and showcased the
superior adaptability and accuracy of the proposed method. The experimental results
underscored the model’s ability to maintain high F1 Scores and AUC values across chal-
lenging scenarios, confirming its robustness against adversarial attacks. The incorporation
of DDM with a threshold-based anomaly detection mechanism effectively minimized false
positives, while Incremental Learning ensured continuous adaptability to evolving threats.
These characteristics make DDM-CNN a reliable and scalable solution for modern intru-
sion detection systems.
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