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Abstract. In modern product design, complex modular structures and variable depen-
dencies pose new challenges to design efficiency and quality. Traditional design struc-
ture optimisation methods, such as modular design, quality function development and
constraint-based optimisation techniques, although simplifying the design process to a
certain extent, have limited effectiveness in coping with high-dimensional, multi-module
and dynamically changing complex systems. To overcome these limitations, this paper
proposes an intelligent optimisation method for product design based on Optimized Den-
sity Peaks Clustering (ODPC). Firstly, ODPC is able to automatically identify critical
modules and high-density regions in the design structure by combining the analysis of
local density and relative distances in order to optimise the complex interactions between
modules. By dynamically adjusting the bandwidth (using the silver disc criterion) and
truncation distance (using K-NN) for density calculation, ODPC can flexibly adapt to dif-
ferent design scenarios and complexities. In addition, this paper introduces the distance
metric adjustment based on information theory, which combines the metrics of mutual in-
formation and KL dispersion to capture the complex relationships between modules more
precisely, and improves the modularity level and design quality of the system. In order
to verify the practicability of the ODPC method, this paper carries out an application
analysis through the design case of a smart air purifier.
Keywords: product design optimization; density peaks clustering; design structure ma-
trix; automated parameter selection; modular management

1. Introduction. In today’s rapidly evolving technological environment, organisations
are faced with increasing challenges as product design complexity and competitive pres-
sures continue to grow. Product design requires not only excellence in functionality and
performance, but also cost-effectiveness, manufacturing feasibility and market adaptabil-
ity. Therefore, how to optimise the product design process and reduce development time
and cost while maintaining high quality has become a key factor in the competitiveness
of enterprises [1, 2, 3]. Intelligent optimisation technology provides a new path to this
goal, and through automation and intelligent means, it can significantly improve design
efficiency and innovation. In the context of intelligent manufacturing and Industry 4.0,
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intelligent optimisation of product design not only enhances the R&D capability of enter-
prises, but also has great significance for the upgrading and transformation of the whole
industry [4, 5]. It can help enterprises quickly respond to market changes and shorten the
time-to-market, while ensuring product reliability and quality.

Clustering technique, as an important data analysis tool [6, 7], is widely used in various
fields. In intelligent optimisation of product design, clustering methods can be used to
automatically identify and group functional modules and components in a design to effec-
tively manage and simplify the design structure. Through clustering analysis, designers
can better understand the distribution of functions within a product and the interde-
pendencies between modules, so as to optimise the design solution and reduce system
complexity [8]. Especially for complex products with highly modular and diverse compo-
nents, clustering techniques can reveal potential design patterns and optimisation paths,
helping design teams to make more informed decisions during the development process.
Density Peak Clustering (DPC), as an advanced clustering method [9, 10], can accurately
identify key modules and optimisation opportunities in a design by combining the analysis
of local densities and relative distances, which provides a strong support for intelligent
optimisation of product design. The objective of this study is to construct an efficient
design optimisation framework by combining DPC with Design Structure Matrix (DSM),
which is able to automatically identify critical modules and optimisation paths in complex
designs, thus enhancing product design efficiency and performance.

1.1. Related work. Optimisation of product design structures has always been an im-
portant research topic in the field of engineering, and the traditional methods mainly
include modular design, Quality Function Development (QFD) [11, 12] and constraint-
based optimisation techniques. These methods have been successful in improving the
efficiency and quality of product design to some extent, but there are still many chal-
lenges in dealing with complex systems.

Modular design is a widely used approach to simplify the design process and manage
complexity by breaking down a product into relatively independent modules. Helo [13]
proposes a methodology for analysing and optimising the modular design of a product by
means of the Design Structure Matrix (DSM) approach. The DSM presents the modules
and their interactions in the system in the form of a matrix, which provides the designer
with a clear DSM provides designers with a clear perspective to identify and optimise the
coupling between modules. It is shown that DSM can effectively simplify the complexity
of product design, but when dealing with multi-dimensional and dynamically changing
systems, the relationships between modules may become difficult to manage.

QFD is another commonly used product design optimisation method that guides the
design process by translating customer requirements into engineering characteristics. Liu
[14] showed that QFD can significantly improve product marketability and customer sat-
isfaction. However, QFD has limitations in dealing with modern complex product designs,
especially when the design needs to balance multiple conflicting objectives, which may
not be adequately addressed by traditional QFD methods.

Constraint-based optimisation techniques are also widely used in product design op-
timisation. Kreng and Lee [15] proposed a framework for multi-objective optimisation
using genetic algorithm (GA) for solving complex constrained problems in product de-
sign. It was found that GA performs well in dealing with high-dimensional optimisation
problems, but further improvement of the algorithm’s adaptability and robustness is still
needed when facing uncertainty and dynamically changing environments. In addition,
empirically based heuristics have been widely used in product design optimisation. For
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example, Meng [16] used the simulated annealing algorithm (SA) to optimise an aero-
engine design. It is shown that SA can effectively search the complex design space, but
its convergence speed and local optimal solution problems limit its wide use in practical
applications.

Currently, research on product design structure optimisation focuses on how to better
deal with multi-dimensional data and dynamically changing dependencies of complex sys-
tems [17, 18]. Modern product design involves the integration of multiple technology do-
mains and functional modules, and traditional optimisation methods are overwhelmed in
dealing with these complexities. To overcome these challenges, researchers have proposed
many new methods and techniques, but these methods also face their own limitations
[19].

Firstly, systems engineering methods have been widely used in modern product de-
sign. Pessoa and Becker [20] discuss the application of systems engineering in complex
product design, emphasising the importance of comprehensive requirements analysis and
functional decomposition at the early stages of design. However, the systems engineering
approach requires a great deal of upfront work and cross-team coordination, and its ap-
plication efficiency is somewhat limited in an environment of rapid iteration and flexible
design.

Secondly, methods based on network analysis have been used to optimise complex
dependencies between product modules. Dong et al. [21] used Social Network Analysis
(SNA) to study interactive recommendations in product design and found that the design
structure can be better understood and optimised by analysing the network relationships
between modules. However, SNA may be difficult to adapt to real-time design adjustments
when facing highly dynamic and changing dependencies.

1.2. Motivation and contribution. To address these challenges, this paper proposes
an intelligent optimisation method for product design based on Optimized Density Peaks
Clustering (ODPC). The main innovations and contributions of this study include:

(1) ODPC introduces a mechanism for dynamic parameter tuning, including automatic
adjustment of bandwidth and adaptive selection of truncation distance. By adopting
the Silver Plate criterion to optimise the bandwidth for density computation and the K-
Nearest Neighbors (K-NN) [22, 23] to automatically select the truncation distance, ODPC
is able to flexibly adapt to different design scenarios and complexities. This feature enables
ODPC to provide robust and efficient optimisation solutions in the face of changing design
requirements and systems of varying complexity.

(2) An information theory-based distance metric adjustment is introduced in ODPC to
optimise the similarity and difference metrics between data points by combining mutual
information and KL dispersion. With this integrated distance metric, ODPC is able to
more accurately reflect the complex relationships between design modules, thus improving
the modularity level and design quality of the system. This improvement demonstrates
strong adaptability and performance enhancement when dealing with design optimisation
problems with high-dimensional, non-linear data.

2. Peak density clustering algorithm and its optimisation.

2.1. principles and analysis. dpc is a novel algorithm for identifying the centres of
clusters based on the local densities and relative distances of the data points. the dpc
algorithm does not require any prior knowledge of the number of clusters in the data, and
it can efficiently find clusters of arbitrary shapes. Therefore, it performs well in dealing
with complex high-dimensional datasets.
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The core idea of the DPC algorithm is to use the local density and relative distance
of the data points to identify the clustering centres. Specifically, the algorithm identifies
clustering centres using two main metrics: 1. local density (ρ): a measure of how dense
the area around each data point is; 2. relative distance (δ): a measure of the minimum
distance between each data point and a data point with a higher density.

For each point xi in the dataset, the local density ρi can be calculated by.

ρi =
∑
j

χ (d(xi, xj)− dc) (1)

where χ is an indicator function.
If d(xi, xj) < dc then χ = 1, otherwise χ = 0. The d(xi, xj) denotes the distance

between the data points xi and xj, and dc is a truncation distance used to define the
extent of the neighbourhood. In this way, ρi indicates how many data points are within
distance dc.

For each data point xi, its relative distance δi is defined as the distance between xi and
the denser nearest neighbour data point.

δi = min
j:ρj>ρi

d(xi, xj) (2)

For the data point with the highest density, define its δ value as the maximum distance
from that point to all other points to ensure that it can be used as a clustering centre.

2.2. Strategy of ODPC. In the ODPC algorithm, several improvements are made to
improve the accuracy and efficiency of clustering. Specifically, this paper focuses on the
following aspects of optimisation: density calculation, tuning of the distance metric and
automated parameter selection. These optimisation strategies are described in detail
below.

2.2.1. Optimization of density calculation. In the classical peak density clustering algo-
rithm, the calculation of the local density (ρ) relies on a truncation distance (dc), i.e.,
the density is only accumulated if the distance between two points is less than dc. This
method is concise but has the following shortcomings: (1) The choice of truncation dis-
tance is sensitive to the result: the choice of dc has a great influence on the calculation of
density, and if it is not chosen properly, it may lead to a decrease in the accuracy of the
clustering result. (2) Insensitivity to outliers: Classical methods tend to ignore outliers
(i.e., isolated points), which may adversely affect the identification of clustering centres.

To overcome these problems, the optimised density calculation method improves the
density calculation by introducing Kernel Density Estimation (KDE) and Gaussian kernel
function. The specific optimisation strategy is as follows:

KDE is a parameter-free density estimation method that smoothly estimates the prob-
ability density of the data by placing a kernel function at each data point location. The
density estimation method of KDE is shown as follows.

ρi =
∑
j

K (d(xi, xj), h) (3)

where K denotes the kernel function, usually a Gaussian kernel function is chosen.

K (d(xi, xj), h) = exp

(
−d(xi, xj)

2

2h2

)
(4)

where h is a bandwidth parameter that controls the width of the kernel function, i.e. the
range of influence of each data point on its neighbourhood.
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The choice of bandwidth h is critical. A smaller value of h will result in an estimated
density with higher resolution but possibly with noise, while a larger value of h will result
in a density estimate that is too smooth. The bandwidth can be chosen automatically by
methods such as cross-validation or Silverman’s rule of thumb to balance the smoothness
and accuracy of the estimate.

The use of a Gaussian kernel function to compute the density allows the effect of
each data point on other points in its neighbourhood to decay gradually, rather than
being binarised as in the case of truncated distances. This approach makes the density
calculation smoother and more stable, and better reflects the local densities of the data.
With these improvements, the density calculation becomes more flexible and robust, with
better adaptability to clusters of different shapes and densities. In addition, the optimised
density calculation method enables ODPC to identify cluster centres more accurately and
be more sensitive to outliers, thus improving the overall quality of the clustering results.

2.2.2. Information theory-based distance metric tuning. In Optimal Density Peak Clus-
tering (ODPC) algorithm, the choice of distance metric has a crucial impact on the
performance of the algorithm and the clustering effect. In order to better handle complex
data structures and high-dimensional datasets, we introduce a distance metric adjustment
method based on information theory. The method utilises Mutual Information (MI) and
KL Scatter (Kullback-Leibler Divergence (KLD)) in information theory to measure the
similarity and difference between data points, thus improving the accuracy and robustness
of clustering.

Information theory provides a measure of uncertainty and similarity from the perspec-
tive of probability distributions. In data analysis and clustering, the use of information-
theoretic metrics allows for a deeper understanding of the interrelationships between data,
with significant advantages especially when dealing with nonlinear and high-dimensional
data.

Mutual information is a measure of the degree of interdependence between two random
variables. For two random variables X and Y , the mutual information is defined as
follows:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(5)

where p(x, y) is the joint probability distribution; p(x) and p(y) are the marginal proba-
bility distributions of X and Y respectively. Mutual information reflects the amount of
information shared between the variables X and Y , with larger values indicating greater
interdependence between the two.

KL scatter is an asymmetry measure for the difference between two probability distri-
butions P and Q. For discrete distributions P and Q, KL scatter is defined as follows:

DKL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(6)

The KL scatter measures the information loss of P with respect to Q, with the KL
scatter value being smaller as P and Q get closer, and vice versa.

In order to effectively apply information-theoretic metrics in ODPC, we propose a
distance metric adjustment strategy based on mutual information and KL scatter. First,
the joint probability distribution and edge probability distribution of the data points are
calculated using the KDE method described above. For each data point xi and xj in the
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dataset, we first construct its joint probability distribution p(xi, xj) by KDE.

p(xi, xj) =
1

N

N∑
k=1

K(xi, xk)K(xj, xk) (7)

where N is the number of data points.
Calculate the edge probability distributions p(xi) and p(xj) for each data point sepa-

rately. The marginal distribution can be obtained by integrating the joint distribution
over another variable.

p(xi) =

∫ ∞

−∞
p(xi, xj)dxj (8)

p(xj) =

∫ ∞

−∞
p(xi, xj)dxi (9)

Using mutual information as a distance metric, the similarity between data points
is measured by calculating their mutual information. For data points xi and xj, their
distance metric based on mutual information is defined as follow:

dMI(xi, xj) = −I(xi;xj) (10)

where I(xi;xj) is the mutual information of the data points xi and xj. The negative
sign is used to convert the similarity metric to a distance metric; the greater the mutual
information, the smaller the distance.

The KL scatter is used to measure the difference between the probability distributions
of the data points. For the data points xi and xj, their distance measure based on KL
scatter is defined as follow:

dKLD(xi, xj) = DKL(p(xi) ∥ p(xj)) +DKL(p(xj) ∥ p(xi)) (11)

This symmetric KL scatter measure ensures that the asymmetric effects of distance
are eliminated and that the distance between two data points is the sum of their mutual
information loss.

Finally, a comprehensive information-theoretic distance metric is used to measure the
similarity between data points. In order to combine the advantages of mutual information
and KL dispersion, we propose an integrated distance metric. For data points xi and xj,
the combined information theoretic distance metric is defined as follow:

dIT(xi, xj) = αdMI(xi, xj) + βdKLD(xi, xj) (12)

where α and β are weight parameters to balance the contribution of mutual information
and KL scatter.

A comprehensive distance metric is used to replace the traditional Euclidean distance in
the process of clustering centre identification and data point assignment, thus improving
the accuracy and robustness of clustering. The schematic diagram of distance metric
adjustment based on information theory is shown in Figure 1.

In this schematic, we show the concept of distance metric adjustment based on infor-
mation theory. The relationship between these data points and the clustering centres
is represented by different distance metrics (mutual information and KL scatter). The
blue dots indicate the position of each data point in the dataset. The coordinates of the
data points (e.g., A, B, C, etc.) are used to identify the locations of these points. The
red ”X” markers indicate the cluster centres determined by the ODPC algorithm. The
location of the cluster centre is calculated based on the density and relative distance of
the data points. The dotted line connections indicate the distances between the data
points and the clustering centres, and these distance measures can be calculated based
on mutual information and KL scatter. Each dashed line shows how the data points
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Figure 1. Adjustment of distance metrics based on information theory

are connected to the clustering centres by information-theoretic metrics, reflecting their
similarities and differences. With this information-theoretic based adjustment of distance
metrics, ODPC is able to capture the complex relationships between data points more
accurately, especially when dealing with high-dimensional and non-linear data, and this
approach significantly improves the performance of clustering and the stability of results.

2.2.3. Automated parameter selection. In the ODPC algorithm, parameter selection has
a crucial impact on the accuracy and stability of the clustering results. In traditional
methods, parameters are usually determined by relying on expert experience or through
multiple trials, which is time-consuming and may lead to inconsistent clustering results.
In order to enhance the robustness and adaptability of ODPC, this paper proposes a set of
automated parameter selection strategies, including automatic adjustment of bandwidth,
automatic selection of truncation distance, and data-driven weight optimisation.

The bandwidth h is a key parameter in kernel density estimation (KDE), which de-
termines the degree of smoothing of the kernel function. In ODPC, a reasonable choice
of bandwidth can significantly improve the accuracy and clustering effect of density es-
timation. We use Silverman’s Rule of Thumb to automatically adjust the bandwidth h.
Silverman’s Rule of Thumb is a rule of thumb for estimating the bandwidth h, which is
calculated as follows:

h = 0.9 ·min

(
σ,

IQR

1.34

)
· n−1/5 (13)

where σ is the standard deviation of the dataset, IQR is the interquartile range of the
data, which represents the middle 50% range of the data, and n is the sample size.

With Silverman’s Rule of Thumb, the bandwidth h is dynamically estimated and ad-
justed so that the density estimation captures the main features of the data while avoiding
loss of detail due to excessive smoothing.

The truncation distance dc is a key parameter in the calculation of the local density (ρ)
and determines over what extent the data points contribute to the density. Automatic
selection of dc can be achieved by K-NN. The steps for K-NN selection of dc are as follows:
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(1) Calculate the distance to the nearest k-neighbour for each data point. For each
point xi in the data set, calculate its distance to all other points and find the nearest
k-neighbours. Let the distances to these neighbours be di1, di2, . . . , dik.
(2) Choose the average distance as the cut-off distance. For each data point xi, calculate

the average distance of its nearest k neighbours:

dc,i =
1

k

k∑
j=1

dij (14)

where dij is the distance between the point xi and its j-th nearest neighbour.
(3) Determine the global truncation distance. The final truncation distance dc can be

chosen as the average of all dc,i:

dc =
1

n

n∑
i=1

dc,i (15)

This ensures that dc is applicable to density calculations for most data points.
In the integrated information theory distance metric, the weighting parameters α and β

determine the contribution of mutual information and KL scatter to the distance metric.
To make the ODPC more flexible and adaptable to the characteristics of the data, we use
a data-driven approach to automatically adjust these weights. The data-driven weight
selection strategy is as follows:

First, the density variation and similarity distribution of the data are calculated. The
density variation Vρ is used to measure the difference in density at different points in the
dataset and can be quantified by the density variance:

Vρ =
1

n

n∑
i=1

(ρi − ρ)2 (16)

where ρi is the local density of data point xi and ρ is the average density of all data points.
The similarity distribution Vsim is used to measure the variation in similarity between

data points and can be quantified by the variance of the similarity matrix. Similarity is
assumed to be represented by the reciprocal of the distance d(xi, xj):

Vsim =
1

n2

n∑
i=1

n∑
j=1

(
1

d(xi, xj)
− sim

)2

(17)

where sim is the average similarity of all pairs of points.
Then, the weighting parameters are dynamically adjusted. The weighting parameters

α and β are adjusted according to the relative size of the density change and similarity
distribution.

α =
Vρ

Vρ + Vsim

(18)

β =
Vsim

Vρ + Vsim

(19)

3. Product Design Optimization Model Based on ODPC.
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3.1. Application of DSM in product design. DSM is a powerful tool for representing
and analysing the structure of complex product designs [24]. DSM presents the interre-
lationships between modules and components of a system in the form of a matrix. DSM
is widely used in systems engineering and product design to optimise the design process,
manage inter-module dependencies, and improve the maintainability of designs.

DSM is a square matrix of n × n [25], where n denotes the number of modules or
components in the system. The rows and columns of the DSM represent the different
modules in the system, and the elements of the matrix represent the interrelationships or
dependencies between these modules. The basic form of the DSM is as follows:

DSM =


M1 M2 M3 L Mn

0 a12 a13 L a1n
a21 0 a23 L a2n
a31 a32 0 L a3n
M M M O M
an1 an2 an3 L 0


where Mi and Mj denote the i-th and j-th modules in the system; and the element aij
denotes the dependency or interaction between modules Mi and Mj.
By analysing the DSM, it is possible to find out which modules have strong dependencies

on each other, thus guiding the partitioning and integration of modules. The values aij in
the matrix can be either binary (0 or 1) or quantitative values that measure the strength
of relationships between modules. An example of the DSM matrix is shown in Figure 2.

Figure 2. Examples of DSM matrices

In ODPC, DSM is not only used to represent the structure of product design, but also
to optimise the clustering process of the design structure. First, the design structure
matrix of the product is constructed. The DSM is built by defining all the modules in the
system and the dependencies between them. This process usually involves listing all the
modules in the system and identifying the direct dependencies or interactions between
each module. Finally, these relationships are represented as matrix elements in the DSM.
For example, for a complex mechanical system, a DSM can be constructed to represent
the connections and interactions between different mechanical components.

3.2. ODPC-based structural clustering model for product design. In complex
product design, it is crucial to optimise the dependencies and functional integration be-
tween modules. The ODPC-based product design structure clustering model proposed
in this paper effectively identifies and optimises the modular structure of products by
combining with DSM to improve design efficiency and quality.
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3.2.1. DSM-based Product Design Structure Representation. The DSM is defined as a
square matrix of n × n, where n denotes the number of modules in the system and the
elements of the matrix dij denote the dependencies or interactions between modules Mi

and Mj. The matrix D is represented as follow:

D =


d11 d12 d13 L d1n
d21 d22 d23 L d2n
d31 d32 d33 L d3n
M M M O M
dn1 dn2 dn3 L dnm


where dij denotes the degree of dependency or interaction strength of module Mi on Mj.

3.2.2. ODPC-based clustering process. The ODPC algorithm automatically identifies the
clustering centres and assigns modules to the most suitable clusters by analysing the
densities and relative distances in the DSM to optimise the design structure. The following
are the specific steps for implementing the ODPC-based clustering model:

Step 1: Identify Cluster Centres. In DSM, the local density ρi and relative distance δi
of each module are calculated using the ODPC algorithm. The ρ− δ graph identifies the
modules with high density and large distance as the clustering centres.

Step 2: Module Assignment. Assign each module Mi to the nearest clustering centre
Cj. This assignment process is based on the distance and density relationship between
modules and ensures that each module is assigned to the most appropriate cluster.

Step 3: Optimise inter-module dependencies. Use the dependency information in DSM
to further optimise the clustering structure. The optimisation objectives include minimis-
ing the interaction complexity between clusters and maximising the functional consistency
within clusters.

In order to minimise the interaction complexity between clusters, the dependencies
between different clusters need to be reduced, so the optimisation objective function is
defined as.

F1 = min
∑
i ̸=j

dij · xij (20)

where xij is a binary variable indicating whether modules Mi and Mj are located in
different clusters (1 for yes, 0 otherwise).

Also in order to maximise the consistency within the clusters, the inter-module de-
pendency within the same cluster needs to be enhanced with an optimisation objective
function:

F2 = max
∑

i,j∈Ck

dij (21)

where Ck is the set of modules within cluster k and dij denotes the dependency strength
between Mi and Mj.
Step 5: Generate optimised design structure. The final output of the optimised design

structure matrix D′ shows the optimised clustering structure and inter-module depen-
dencies. The optimised DSM can better reflect the modular structure and functional
integration of the system, and improve the design efficiency and maintainability of the
system.
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Next, we give an example of a application. Suppose we have a product design structure
containing 5 modules with the following DSM:

D =


0 1 0.5 0.2 0.3
1 0 0.7 0.8 0.4
0.5 0.7 0 0.6 0.2
0.2 0.8 0.6 0 0.9
0.3 0.4 0.2 0.9 0

 (22)

Using the above steps, we can cluster and optimise it by ODPC. A new design structure
matrixD′ is generated and the optimised clustering results and inter-module dependencies
are shown as follows.

D′ =


0 1 0 0 0
1 0 0.7 0.8 0
0 0.7 0 0.6 0
0 0.8 0.6 0 0.9
0 0 0 0.9 0

 (23)

4. Application case of ODPC. In order to better illustrate the application of Optimal
Density Peak Clustering (ODPC) in real product design, we choose a simpler household
appliance, a smart air purifier. This case demonstrates how ODPC can improve design
efficiency, performance and user experience by optimising the product design structure.

First, the DSM of the smart air purifier is established to represent the interrelationships
between the functional modules and their subcomponents. For example, the DSM of a
smart air purifier may include the following modules: fan system, cartridge system, sensor
system, and control system. Assume that the initial DSM is as follows:

D =


0 0.8 0.5 0.3
0.8 0 0.4 0.7
0.5 0.4 0 0.6
0.3 0.7 0.6 0

 (24)

In this matrix, the strength of the dependency between the fan system and the cartridge
system is 0.8 and the strength of the dependency between the cartridge system and the
sensor system is 0.4.

Local densities ρi and relative distances δi are calculated for each module using kernel
density estimation methods to identify potential clustering centres. The calculation results
are as follows.

ρ = [1.6, 1.9, 1.5, 1.6] (25)

δ = [0.3, 0.2, 0.4, 0.5] (26)

where density ρ and relative distance δ denote the importance of each module in the
design structure and its relative isolation from other modules, respectively.

On the ρ− δ graph, modules with high density and large relative distances are selected
as clustering centres. This case will control the system (M4) which can be identified as
the centre of clustering because it has high density and relative distance.

Assign the other modules to the most appropriate cluster centres. Based on the distance
and density relationships between modules, the fan system (M1) and the sensor system
(M3) are assigned to the control system clusters, while the cartridge system (M2) is also
assigned to the same clusters due to its high dependency with the fan system. Based
on the initial clustering results, the dependencies between modules are further optimised
with the goal of minimising the interaction complexity between clusters and maximising
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the functional consistency within clusters. Complex interactions between different mod-
ules are reduced by adjusting the assignment of modules and optimising the clustering
structure.

The optimised DSM is as follows.

D′ =


0 0.8 0.5 0
0.8 0 0.4 0
0.5 0.4 0 0.6
0 0 0.6 0

 (27)

The optimisation has resulted in enhanced dependencies between the fan system, car-
tridge system and sensor system, while the control system has fewer direct dependencies
with other systems, thus simplifying the complex interactions between the systems.

5. Conclusion. In this study, an intelligent optimisation method for product design
based on ODPC is proposed. Firstly, the core algorithm and optimisation strategy of
ODPC are discussed in detail, including the optimisation of density calculation, the ad-
justment of distance metric based on information theory, and the automated parameter
selection method. Through these improvements, ODPC is able to automatically identify
key modules in the design structure, optimise inter-module dependencies, and maintain
efficient adaptability in different design scenarios. These features of ODPC enable it to
perform well in coping with modular management and optimisation of complex systems.

ODPC has demonstrated its strong potential in the application of smart air purifiers.
By analysing and optimising the design structure of the air purifier, ODPC successfully
simplifies the complex interactions between modules and improves the performance and
design efficiency of the system. This case demonstrates the effectiveness and feasibility
of the ODPC methodology in real product design, and proves its advantages in dealing
with complex design problems. By dynamically adjusting and optimising key parameters,
ODPC is able to maintain robust performance and efficient optimisation in a changing
design environment.

Although ODPC achieved significant results in the use cases in this paper, future re-
search could further explore its potential and scalability for application in other com-
plex systems. For example, the performance of ODPC in larger and higher dimensional
datasets could be investigated, or its application in real-time design optimisation could
be explored.
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