Journal of Information Hiding and Multimedia Signal Processing ©2025 ISSN 2073-4212
Ubiquitous International Volume 16, Number 4, December 2025

A Novel Framework Integrating Rough Set Theory
with Arabic Text Steganography for Improving Data
Security

Assist Prof. Dr. Farah R. Shareef

Education Development Department, Iraq
sabahaliraq2014@gmail.com

*Corresponding author: Assist Prof. Dr. Farah R. Shareef
Received May 25, 2025; revised August 25, 2025; accepted September 2, 2025.

ABSTRACT. Ezisting Arabic text steganography techniques often suffer from limited hid-
ing capacity, susceptibility to detection, and low robustness. To address these issues, this
study introduces a novel two-phase framework that integrates Rough Set Theory (RST)
with Arabic text steganography to enhance data security. In the first phase, RST is
applied to a decision table constructed from key Arabic letter characteristics (such as
pointed vs. Not pointed, solar vs. lunar classification, and Noorani vs. dark categoriza-
tion) to derive optimized classification rules. In the second phase, these rules guide a
new steganographic technique that conceals secret information in Arabic text by embed-
ding two secret bits per character and dynamically adapting across five distinct linguistic
contexts to mazximize concealment and security. Fxperimental results demonstrate that
the proposed method significantly improves key performance metrics, including embed-
ding accuracy, robustness, and hiding capacity, compared to existing techniques, thereby
making it highly suitable for secure data communication applications utilizing the Arabic
language.

Keywords: Rough Set Theory; Arabic text steganography; decision table; data security;
embedding techniques.

1. Introduction. Steganography is the practice of concealing secret information within an innocuous
digital carrier (e.g., text, images, audio, or video) such that the existence of the hidden content is not
apparent to unintended recipients. The hidden payload (plaintext or ciphertext) is embedded into a cover
to produce a stego object, and extraction typically requires a stego key analogous to a password [1], [2]. In
text steganography, common strategies include statistical, random, and format-based manipulations, such
as inserting invisible characters or subtle typographic changes. Despite their practicality, many methods
still face three persistent limitations: capacity (how much data can be hidden), security (resistance to
detection), and robustness (resilience against editing or degradation) [3].

Rough Set Theory (RST), introduced by Pawlak, offers a principled framework for reasoning under
uncertainty by approximating sets via their lower and upper bounds and enabling attribute reduction to
retain only the most discriminative features. RST has been widely used for pattern discovery, feature
significance assessment, and dimensionality reduction with minimal information loss [4]. These properties
make RST a natural candidate for deriving compact, data-driven rules that guide text steganography
decisions.

The central concept in RST involves the approximation of sets, represented through lower and upper
approximations. The lower approximation includes elements that definitively belong to a set, while the
upper approximation encompasses all elements that potentially belong to the set. The difference between
the lower and upper approximations is referred to as the boundary region, representing uncertainty
regarding membership status [5], see Figure 1.

In this research, Rough Set Theory is utilized to enhance Arabic text steganography by systematically
deriving decision rules based on specific linguistic attributes of the Arabic language. These rules serve

1131

1132 F. R. Shareef

'_11'”'; (X

FiGURE 1. The lower and upper approximations for an object X.

as guidelines in developing a novel steganographic approach capable of embedding secret bits efficiently
and securely within Arabic textual covers. Rough Set Theory (RST) has been used for a number of
things, including quickly analysing binary data, feature reducibility (the ability to easily find the best or
worst subsets of attributes), less complex computations, and more accurate results because it is naturally
insensitive to image noise [6]. Steganography, on the other hand, is the act of hiding private or secret
information in a harmless medium. The secret information can be text, pictures, binary data, or videos.
The cover medium can also be text, pictures, or videos. The thing that comes out of the process for
embedding is called stego media [7].

This work leverages RST to exploit distinctive linguistic properties of Arabic script such as pointed
vs. unpointed letters, solar vs. lunar letters, and Noorani vs. dark groupings to generate classification
rules that drive a Unicode-based embedding mechanism. The proposed system encodes two secret bits
per character and adapts across five linguistic contexts, including a dedicated strategy for isolated letters
that cannot accept Kashida, thereby improving both capacity and concealment while maintaining visual
fidelity of the cover text.

1.1. Related work. Arabic script comprises 28 letters written in a cursive style (similar to Urdu and
Persian). Letter shapes vary by position (initial, medial, final, isolated), and many letters carry one to
three dots above or below. Fifteen letters are dotted, and five of these have more than one dot—properties
not present in English orthography [8]. In addition, Arabic uses diacritics (“Harakat”) that encode short
vowels and other phonetic cues—Shaddah, Sukun, Kasrah, Tanwin Kasrah, Fathah, Tanwin Fathah,
Dammah, and Tanwin Dammah—which are crucial for accurate interpretation in texts such as the Holy
Qur’an and educational materials [9]. Leveraging these linguistic features (dotted vs. undotted letters,
solar vs. lunar letters, and Noorani vs. dark classes), the literature has proposed several text-based
steganographic strategies:

(1) Kashida-based embedding [10]: Methods that insert the Arabic elongation character (Kashida)
can encode up to two bits per insertion, improving capacity over single-bit schemes. Some ap-
proaches partition the cover text and embed separately in each segment. However, bit ordering and
Kashida placement can affect both capacity and detectability.

(2) Solar/Moon letter encoding [11]: These techniques map bit patterns to Kashida insertions
conditioned on the solar (sun) vs. lunar (moon) classification of the preceding letter. For example,
a single Kashida after a solar letter may denote “00,” while patterns following lunar letters encode
other combinations (e.g., “01,” “10,” “117).

(3) Noorani/Dark classes with Unicode spaces [12]: By combining Kashida with zero-width
or non-printing Unicode spaces and exploiting Noorani vs. dark letter groupings, these methods
expand the embedding codebook and offer as many as five placement options, thereby improving
concealment flexibility.

(4) Rough Set Theory (RST) for feature selection [13]: RST has been used to reduce high-
dimensional steganalysis features (e.g., via alpha-positive domain reduction), maintaining detection

Integrating Rough Set Theory with Arabic Text Steganography for Improving Data Security 1133

accuracy while lowering computational cost. Although not an embedding method, this line demon-
strates RST’s utility for rule extraction and dimensionality reduction.

(5) Broader RST applications [14]: Surveys show RST’s integration with fuzzy, probabilistic, and
deep-learning frameworks for large-scale analytics, suggesting potential for hybrid, data-driven rule
design in steganography.

(6) RST in Arabic text processing [15]: RST-based approaches have improved Arabic text di-
rection detection, reporting notable accuracy across unigram, bigram, and trigram models, and
indicating that RST can discriminate among linguistically motivated feature sets.

Hence from analysis of related works, we can identify limitations, one that the existing Arabic text
steganography largely focuses on Kashida patterns and letter classes but does not systematically derive
embedding rules using RST, nor does it consistently handle isolated letters (which cannot accept Kashida)
with a unified Unicode-based strategy. Our work addresses these gaps by using RST to generate compact
decision rules over Arabic letter attributes and by operationalizing them in a two-bit, multi-context
embedding scheme.

1.2. Motivation and contribution. To overcome the capacity, security, and robustness gaps noted
above, this method propose an RST-guided, Arabic-aware steganography framework. The main contri-
butions are:

e RST-derived decision rules. This method construct a decision table over Arabic letter attributes
(pointed /unpointed, solar/lunar, Noorani/dark, isolated) and apply RST to obtain lower /upper ap-
proximation rules that minimize attributes while maximizing classification reliability for embedding
actions.

e Two-bit, Unicode-based embedding across eight contexts. Using Kashida, Zero-Width
Joiner (ZWJ), Zero-Width No-Break Space (ZWNBS), Zero-Width Space (ZWS), word joiner (WJ),
Right-to-Left mark (R-T-L), Arabic Letter Mark, and Hair Space, the method encode 2 bits/char-
acter and adapt to five linguistic scenarios, including a dedicated Rule 5 for isolated letters that
cannot take Kashida. This expands the usable alphabet and reduces detectability.

e Practical pipeline and evaluation. We detail embedding and extraction algorithms, and evalu-
ate on Arabic covers with secret messages in Arabic, English, and Persian. Results show improved
hiding capacity and favorable secret-to-cover ratios compared with representative baselines, with
optional Gzip compression further increasing effective capacity.

2. Arabic Text Steganography. Preliminaries.

2.1. Secret Message Pre-processing. Before embedding data, the secret message is prepared to max-
imize capacity and maintain cover text quality. The message is first encoded into a binary bitstream
(sequence of 0s and 1s). If the message is large, compression can be applied (e.g., using Gzip) to reduce
its length before embedding [16]. Compressing the secret message decreases the number of bits to hide,
thereby improving effective embedding capacity and reducing the impact on the cover text. After optional
compression, the binary secret data is ready to be concealed two bits at a time in the cover text. Figure
2 demonstrates how the secret message is compressed before being passed to the embedding module.

GzZIP Compressed

Insert Text ,
Compression Text

FI1GURE 2. The framework for the compression of confidential communica-
tions.

2.2. Arabic Cover Text Characteristics and Features. Arabic script has unique linguistic features
that we exploit for steganography. It is written cursively, and many letters can connect to adjacent
letters. The Kashida (Arabic Tatweel, U+0640) is an elongation character that can be inserted into
certain connected letters without altering the text’s meaning. However, not all Arabic letters accept a
Kashida insertion letters that cannot connect to a subsequent letter (such as alef ” 7, dal ” 7, ete.) will

1134 F. R. Shareef

not visually accommodate a Kashida. We refer to such non-connecting letters as isolated letters, since
they break the cursive connection (appearing isolated in writing).
Additionally, Arabic letters can be classified by other attributes that affect how we embed data:

1. Pointed vs. Not Pointed: Some letters have one or more dots (e.g. ” ” has a dot, ” ” has a dot
below) while others have none. Prior work has used this distinction in Kashida-based schemes;

2. “Noorani” vs. “Darkness” Letters: This is a linguistic grouping of Arabic letters (Noorani
appears in specific contexts such as Al-Fatiha, while Darkness letters do not). In our context, we
divide the alphabet into two groups termed Noorani and Dark letters (each group containing certain
characters). This grouping, along with the letter’s connectivity, will guide different embedding rules;

3. Solar vs. Lunar Letters: The Arabic alphabet is also categorized into sun (shamsiyyah) letters
and moon (qamariyyah) letters based on how the definite article is assimilated in pronunciation.
This attribute can influence where subtle markers might be less noticeable. (This feature is con-
ceptually related to Noorani/Dark classification in our scheme.); Table 1 show the Pointed and Not
Pointed letters, Noorani and Darkness letters, (Solar/sun) and (Lunar/Moon) letters and Isolated

letters.
TABLE 1. Attributes of Arabic Letters
Attribute Arabic letters
Pointed PR NG N A W O RGN,
Not Pointed omamJ-dlg o e ya-p-|
Noorani -s-Op-J-d- g o a-
Darkness N e
(Solar/sun) O-G-ba-dan e e e e
(Lunar/Moon) N B R
Isolated TS S R PP S

Using these attributes, we identify seven distinct contexts in the cover text that can carry hidden bits.

e Attributes: These represent the linguistic features of Arabic letters, including:

— Whether the letter is pointed or not pointed.

— Whether it is a solar (sun) or lunar (moon) letter.

— Whether it belongs to the Noorani or dark group.

— Whether it is an isolated letter that cannot accommodate a Kashida extension.

e Decision Attribute: This defines the classification or embedding action to be applied, based on
the combination of the above attributes.

e The Decision Rules definition. Using Rough Set Theory, decision rules are systematically
extracted from the decision table as Table 2. This process involves three key components:

() Indiscernibility Relation: This step identifies data entries (Arabic letters) that are indistin-
guishable from one another based on the selected set of attributes. It establishes equivalence
classes of objects sharing identical feature values.

() Attribute Reduction: This stage determines the minimal subset of attributes that preserves
the classification ability of the full attribute set. The resulting reduct eliminates redundant or
non-essential features while retaining classification integrity.

?# Rule Generation: Based on the reduced data, a set of decision rules is derived. These rules
enable accurate classification of new, unseen instances by mapping combinations of linguistic
features to specific embedding actions.

Each context will be handled with a tailored embedding strategy to optimally hide two bits per
character while preserving the natural appearance of the text. Table 2 shows the features of Arabic
letters.

3. Improved Method for Arabic Text Steganography. The proposed steganographic method lever-
ages Rough Set Theory (RST) to systematically derive embedding rules from the Arabic linguistic features
above. By using RST, we ensure that the chosen features (letter attributes) lead to a minimal and effective
set of rules, improving embedding capacity and security. The scheme embeds 2 secret bits per character
by using a combination of Kashida and Unicode zero-width characters, adapting the technique across five

Integrating Rough Set Theory with Arabic Text Steganography for Improving Data Security 1135

TABLE 2. The features of Arabic letters

Arabic | Pointed Un- Noorani | Darkness | Sun | Moon | Decision__start
letters pointed embedding
| NO YES YES NO NO | YES SKIP
< YES NO NO YES NO | YES ZWJ
< YES NO NO YES YES | NO KASHIDA1
< YES NO NO YES YES | NO KASHIDA1
z YES NO NO YES NO | YES ZWJ
z NO YES YES NO NO | YES K+ZWS
z YES NO NO YES NO NO ZWJ
3 NO YES NO YES YES | NO SKIP
3 YES NO NO YES YES | NO SKIP
D NO YES YES NO YES | NO SKIP
J YES NO NO YES YES | NO SKIP
o NO YES YES NO YES | NO ZWJ
1 YES NO NO YES YES | NO KASHIDA1
o= NO YES YES NO YES | NO ZWJ
o= YES NO NO YES YES | NO KASHIDA1
L NO YES YES NO YES | NO ZWJ
L YES NO NO YES YES | NO KASHIDA1
d NO YES YES NO NO | YES K+ZWS
¢ YES NO NO YES NO | YES ZWJ
] YES NO NO YES NO | YES ZWJ
a3 YES NO YES NO NO | YES SKIP
=l NO YES YES NO NO | YES K+ZWS
J NO YES YES NO YES | NO ZWJ
2 NO YES YES NO NO | YES K+ZWS
U YES NO YES NO YES | NO SKIP
° NO YES YES NO NO | YES K+ZWS
E) NO YES YES YES NO | YES SKIP
] YES NO YES NO NO | YES SKIP

linguistic contexts (including a special handling for isolated letters that cannot accept Kashida). This
results in higher payload capacity and improved invisibility compared to traditional one-bit methods.

3.1. RST-Based Derivation of Embedding Rules. Rough Set Theory is used to generate decision
rules that map each letter to an appropriate embedding action based on its attributes. We construct a
decision table where each object is a character in the cover text (categorized by its linguistic features),
and the decision outcome is the embedding strategy for that character (e.g. which character to insert, if
any). RST is adept at reducing attributes and extracting minimal rules, which helps identify the most
significant features for our steganography scheme. By applying RST, we obtained a set of if-then decision
rules guiding the hiding process. In essence, the rules partition the problem into the four cases mentioned
(Pointed vs. Not Pointed, Noorani vs. Dark letters, Sun vs. Moon letters, Isolated vs. connected letters),
determining how to encode two bits in each case.

For example, RST analysis revealed that a letter’s group (Pointed/Not Pointed) and its connectivity
(isolated or not) are sufficient to decide the embedding method for that letter. This led to rules such as:
“IF letter is Pointed-group AND not isolated THEN...; IF letter is Dark-group AND Sun-group THEN

1136 F. R. Shareef

use pattern X; IF letter is isolated THEN use pattern Y,” and so forth, with a separate rule for spaces.
These rules form the basis of our improved embedding algorithm, ensuring that each cover character is
treated optimally according to its type. The use of RST guarantees that we are not using any superfluous
features — the rule set is minimal and focused, which simplifies the embedding and enhances reliability.

3.2. Two-Bit Embedding Scheme Design. Using the rules derived above, the proposed method
designs an embedding scheme that hides 2 bits in each eligible character or space by adding zero-width or
Kashida characters. The method employs a variety of Unicode invisible characters to represent different
bit values without visibly altering the text. Specifically, the method utilizes:

(1) Kashida (Tatweel, U+0640): a visible elongation character inserted into connectable letters;

(2) Zero-Width Joiner (ZWJ, U+200D), Word Joiner (WJ, U+2060) and Zero-Width Non-
Joiner (ZWNJ, U+200C): invisible formatting marks that affect text joining behavior but have
no visible glyph, used in certain contexts (e.g., around spaces or non-connecting letters).

(3) Non-printing thin spaces: a set of very narrow space characters (such as Hair Space U+200A4,
Right-to-Left Mark (R-T-L, U+200F), Zero-Width Space (ZWS, U+FEFF), Arabic Letter Mark,
U+061C). These appear almost imperceptible or not at all in text, especially when used sparingly.

By combining these characters, we create a mapping for each 2-bit pair in each context. In general, for
a given character: two of the bit combinations are encoded by inserting one of the above characters, while
the remaining two combinations are encoded by leaving the text unchanged, relying on the absence of
an insertion as a meaningful state. This approach ensures that every possible 2-bit value (00, 01, 10, 11)
has a representation either as a specific hidden character or as a “no embed” condition, which maintains
the cover text if those bits are encountered.

For instance, in the case of an Un-Pointed-group letter that can accept a Kashida, our scheme might
define: insert a Kashida after the letter to encode “00”, insert a ZWJ to encode “01”, and for bit-pairs
“10” and “117, the insertion are Kashida+ZWS and ZWJ+ZWS, respectively. This complementary design
balances the use of Kashida across different letter types, reducing any bias in where elongation appears.

For letters that cannot accept a Kashida (isolated letters), for example, an isolated letter might use
a R-T-L (U+200F) to encode “00” and ZWS (U+FEFF) to encode ”01” and Arabic letter mark to encode
710”7, while using Hair Space (U+2004) to encode 711"

By adapting the encoding strategy to each context (letter type), the scheme ensures that two bits are
hidden per character on average, significantly boosting capacity. Importantly, the use of Kashida and
zero-width characters is spread out and context-aware, which preserves the visual fidelity of the cover text
— e.g., Kashidas are only added where they naturally could appear for justification, and other markers
are invisible or negligibly small. This minimizes the risk of detection or degradation of the text. The
RST-derived rules govern these decisions, making the embedding process both automated and based on
solid feature selection.

4. Embedding Framework: Rough Set and Steganography Processes.

4.1. Phase 1: Rough Set Rule Extraction Process. Input: A .csv file containing the decision
table, where each row represents an Arabic letter sample and each column denotes an attribute such as:

e Pointed / Not Pointed
e Dark / Noorani
e Sun (Solar) / Moon (Lunar)

Output: Two sets of decision rules:

e Upper Approximation Rules (Uncertain cases)
e Lower Approximation Rules (Certain cases)

Process:

1. Collect Arabic letter characteristics based on their linguistic features.

2. Design the decision table using Microsoft Excel with rows as letter samples and columns as feature
attributes.

Apply Rough Set Theory to compute the indiscernibility relation and group equivalent entries.
Calculate the lower and upper approximations for each class (decision attribute).

5. Extract and record the resulting decision rules for later use in the embedding phase.

> w0

Integrating Rough Set Theory with Arabic Text Steganography for Improving Data Security 1137

4.2. Phase 2: Embedding Process (Steganography). Using the above scheme, the method imple-
ments an embedding algorithm that conceals the secret bitstream into an Arabic cover text. Pseudo-code
for the procedure is outlined below:

1.

Input: Secret message S; Cover text C' (in Arabic).
Output: Stego text with hidden message (Arabic-Stego).

. Prepare Data: Convert the secret message S into a binary bit sequence. If S is large, apply

compression beforehand to reduce its size. Let bitstream represent the sequence of secret bits to
embed. Initialize a pointer j for bitstream at the beginning.

. Traverse Cover: Iterate through each character C[i] in the cover text:

e Skip Non-letters: If C[i] is a harakat (Arabic vowel diacritic), punctuation, digit, or white-
space that is not to be used for embedding, skip it (i.e., copy it unchanged to output). These
characters do not carry hidden data, so they remain as is.

e Otherwise, determine the feature category of C[i]: Is it a Pointed or Not Pointed letter? Can
it connect to the next letter (i.e., not one of the isolated forms) or is it an isolated letter?
Apply Embedding Rule: Based on the category of C[i], apply the corresponding embedding
rule (from the RST-derived rules) to hide the next two secret bits. Let (b1, bs) be the next two bits.

— Pointed Letter Group:

e Rule 1 (Dark 4+ Sun letters):
— If (b1b2) = 00 — Insert Kashida + WJ after C[i].
— If (byba) = 01 — Insert ZWJ after C[i].
— If (b1b2) = 10 — Insert Kashida after C[i].
— If (b1b2) = 11 — Insert ZWJ + ZWS after CJi].
e Rule 2 (Dark + Moon letters):
— If (blbg) = 00 — Insert ZWJ + ZWS.
— If (b1b2) = 01 — Insert Kashidal + WJ.
— If (b1b2) = 10 — Insert ZWJ.
— If (b1b2) = 11 — Insert Kashidal.
— Unpointed Letter Group:
e Rule 3 (Noorani + Sun letters):
— If (b1b2) = 00 — Insert Kashida.
— If (b1b2) = 01 — Insert ZWJ.
— If (b1b2) = 10 — Insert Kashida + ZWS.
— If (b1ba) = 11 — Insert ZWJ + ZWS.
e Rule 4 (Noorani + Moon letters):
— If (b1b2) = 00 — Insert ZWJ + ZWS.
— If (b1b2) = 01 — Insert Kashida.
— If (b1by) = 10 — Insert ZWJ.
— If (b1b2) = 11 — Insert Kashida + ZWS.
— Isolated Letter Group:
e Rule 5 (Non-joinable characters):
— If (b1b2) = 00 — Insert Right-to-Left Mark (R-T-L) after the character.
— If (b1b2) = 01 — Insert Zero-Width Space (ZWS).
— If (b1b2) = 10 — Insert Arabic Letter Mark.
— If (b1b2) = 11 — Insert Hair Space.
Copy the original cover character C[i] (and any inserted symbol) to the output stego text.
Termination: Continue the loop until either all secret bits have been embedded (j reaches the
end of the bitstream) or the cover text is exhausted. If the cover text ends but there are still secret
bits left, the algorithm cannot embed the entire message (this situation is avoided by pre-checking
capacity and possibly compressing or choosing a larger cover). If the secret bits end before cover
text is done, the remaining cover characters are just copied over with no changes.
Output Stego Text: The result is the stego-text where the secret message bits are hidden in the
form of Kashidas and zero-width characters embedded as per the rules. This steganographic text
should appear visually identical to the original cover text for a human reader, with differences only
at the invisible-character level. Table 3 shows the embedding rules.

It is observed that the embedding decision presented in Table 3 corresponds to a single instance of data;
for example, in Rule 1 '10’, the decision is to embed using the combination (Kashidal + ZWS). However,
in practical steganographic applications, it is essential to accommodate all four binary combinations 00,

1138 F. R. Shareef

TABLE 3. Applying five rules for embedding

Rule | Secret Bits | Action
00 Kashida (K1) (U+0640)
1
Rule 1 0 ZWJ (U+200D)
10 K1 + ZWS
11 ZWJ + ZWS
00 ZWJ + ZWS
1 K1
Rule 2 0
10 ZWJ
11 K1 + ZWS
00 K1 + WJ (U+2060)
1 Z
Rule 3 0 W
10 K1
11 ZWJ + ZWS
00 ZWJ + ZWS
Rule 4 01 K1 + WJ
10 ZWJ
11 K1
00 R-T-L (U+200F)
01 ZWS FEFF
Rule 5 (u+)
10 Arabic Letter Mark (U+061C)
11 Hair Space (U+2004)

01, 10, and 11 for each rule to ensure flexible and comprehensive embedding functionality, as illustrated
in Table 3.

For instance, consider the Arabic letter & appearing in the cover text. If the secret bits to be embedded
are '10’, and the letter matches the attributes defined in Rule 3 (pointed, dark, solar), then the appropriate
embedding action is to insert Kashidal after the letter. Conversely, if the secret bits are '11’°, the system
applies a different encoding ZWJ + ZWS—to maintain accurate and undetectable data hiding under the
same rule.

Additionally, Rule 5 must be defined and applied to handle isolated letters, which cannot accommodate
Kashida insertions. In the current version of Table 2, isolated letters were previously marked as “skip,”
but to enhance embedding capacity and completeness, a dedicated concealment strategy for such letters
is necessary in the steganography phase.

4.3. Extraction Process. The extraction procedure is the reverse of embedding and is straightforward
given the known rules.

Input: Arabic stego cover (Ar-St) contains a secret message.

Output: Secret message(s).

Process:

1. Capture the cover text and convert it into an array of characters.
2. Advance through the list one character at a time, referring to each as C[i].
3. Classify each C[i] into one of three categories: (Pointed, Unpointed, or Isolated).
e If Ci] is Pointed Letter Then Examine:
— If C[i] is (Darkness + Sun) letters Then:
« If Cli + 1] is (K1 + WJ) Then get bits (b1b2) = 00
« If Ci + 1] is (ZWJ) Then get bits (b1b2) = 01
x If C[i + 1] is (Kashidal) Then get bits (b1bs) = 10
x If Cli + 1] is (ZWJ + ZWS) Then get bits (b1be) = 11
— If C[i] is (Darkness + Moon) letters Then:

Integrating Rough Set Theory with Arabic Text Steganography for Improving Data Security 1139

x If Cli + 1] is (ZWJ + ZWS) Then get bits (b1b2) = 00
« If Cli 4+ 1] is (K1 + WJ) Then get bits (b1b2) = 01
« If Ci + 1] is (ZWJ) Then get bits (b1b2) = 10
x If C[i + 1] is (Kashidal) Then get bits (b1be) = 11
e If C[i] is Unpointed Letter Then Examine:
— If C[i] is (Noorani + Sun) letters Then:
« If Ci + 1] is (Kashidal) Then get bits (b1b2) = 00
« If Ci + 1] is (ZWJ) Then get bits (b1b2) = 01
« If Cli 4+ 1] is (K1 + ZWS) Then get bits (b1b2) = 10
w If Cli 4+ 1] is (ZWJ + ZWS) Then get bits (b1bs) = 11
— If C[i] is (Noorani + Moon) letters Then:

« If Cli + 1] is (ZWJ + ZWS) Then get bits (b1b2) = 00
« If C[i 4+ 1] is (Kashidal) Then get bits (b1b2) = 01

« If Ci + 1] is (ZWJ) Then get bits (b1b2) = 10

* If Cli+ 1] is (K1 + ZWS) Then get bits (b1by) = 11

o If Ci] is Isolated Letter Then Examine:
— If C[i + 1] is Right-to-Left (R-T-L) Then get bits (b1b2) = 00
— If Cli + 1] is Zero-Width Space (ZWS) Then get bits (b1bs) = 01
— If C[i + 1] is Arabic Letter Mark Then get bits (b1b2) = 10
— If C[i 4 1] is Hair Space Then get bits (b1b2) = 11
4. If compression was used, the final step is to decompress the retrieved bitstream to obtain the
original secret message.
5. End.

Overall, this RST-guided Arabic text steganography method enables efficient hiding of data by en-
coding two bits per character in multiple contexts. By intelligently leveraging Arabic-specific features
and zero-width characters, it achieves high capacity and remains inconspicuous — the inserted characters
are virtually invisible and linguistically appropriate, thus preserving the cover text’s appearance and
integrity. The use of decision rules (from RST) adds a layer of adaptability and ensures that the embed-
ding logic is both optimal and generalized, making the steganographic technique robust against detection
while maximizing the payload. Figure 3 illustrates the proposed method diagram.

Rough Set stage \ Steganography stage\

Secret

Decisision
Message

Table

Apply Rules
& Embed

Rules
Generation

Arabic
Stego Text

FiGure 3. Diagram for the proposed method.

5. Evaluation. A key objective of this research is to enhance the effectiveness of the steganographic pro-
cess by improving both the capacity and concealment performance. To accurately evaluate the proposed
method, several essential metrics and equations are introduced:

1140 F. R. Shareef

e Actual Character Utilization (Real Use): This metric refers to the count of meaningful
characters in the cover text which are effectively utilized to embed hidden information. It is
considered the true measure of usable capacity for embedding [17].

e Proportion Capacity (PC): This metric quantifies the percentage of cover text utilized for hiding
data. It is defined as:

PO — (Actual Utilization of Characters) 100
Length of Cover Text

(1)

e Hiding Capacity (HC): This expresses the density of hidden data relative to the embedding
capacity, calculated as:

HO - (Size of Secret Message (in bits) > < 100

Actual Utilization of Characters (in bytes)

(2)

o Secret-to-Cover Ratio (SCR): This ratio indicates the extent to which the cover text is used
to conceal data and is defined as:

Actual Utilization of Characters
SCR= < Number of Secret Bits) X 100 ®)

Understanding and optimizing these metrics is critical to ensuring that the steganographic process
remains both secure and efficient across various Arabic textual contexts [18].

6. Experimental Results and Analyses. The initial set of embedding rules was generated during the
Rough Set analysis phase. This process was implemented using the R programming language, which was
applied to the decision table (Table 2) formatted as a .csv file created in Microsoft Excel. The execution
of the Rough Set operations—including attribute analysis and rule extraction—is illustrated in Figures
4, 5, and 6, corresponding to the processing steps and output results.

decthi ©) Arabic sttributes R © | read_fileR — Environment Mistory Conmections Tutorial =0

SourceonSave | O S +gun o Source * 2 ™ import Datsset = 20m8 -+ &

2 dnstall.packages("installr")
3 Tibrary(instalir)

4 suppressPackagestartupMessages(library(installrdd

5 updateR()

6 setwd("C:/Users/dell/onebrive/Desktop/Rough Sets/Arabic attributes™)
7 1install.packages(“ReughSets")

8 Tibrary(RoughSets)

9 packageversion(“RoughSets")

T - R4A2 - Clsersidell/Onelvive/Deskiop/Rough Sets/Anbic attributes/ =
> packageversion(“RoughSets™)

1] *1.3.8’
> read.table("Arabic letters.csv” header=TRUE,sep=",")

pointed Un.pointed Noorani Darkness Sun Moon Decision_start.embeding
1 NO YES YES NO NO YES SKIP
2 vES NG NG VES NO YES 23
3 YES NG NO YES YES MO KASHIDAL
4 VES NG NG VES YES NO KASHIDAL
s vES NG NG YES NO YES 23
6 NG YES YES NO NO YES KeZNS

YES NO NO YES N0 NO zw3

[NO YES NO YES YES MO SKIP Ape B, 2025, 919 PM
9 ¥ES NG NO YES YES MO SKIP
10 NG YES VES NO VES NO SKIP
11 YES NG NO YES YES MO SKIP
12 NG ¥ES vES NO YES MO 2w3
13 YES KO NO YES YES MO KASHIDAL
14 NG YES VES NO YES MO 2w3
e vee wn ey vee vee wm vaguTAnl

FIGURE 4. Running the code for rough set with R-language.

For instance, the upper approximation rules generated for the embedding action labeled Kashidal
include rule numbers 3, 4, 9, 11, 13, 15, and 17. All of these rules apply specifically to pointed Arabic
letters. A representative rule derived from this set is:

If (Pointed = True, Dark = True, and Sun = True), then the decision is Kashidal.

This rule was extracted during the Rough Set phase and it utilized in the steganography phase for
embedding the secret bit pattern '10°, as illustrated in Table 4.

The following decision rules were extracted using Rough Set Theory, based on the linguistic features of
Arabic letters. These rules dictate the specific embedding strategy to be used during the steganography
phase:

e Rule 1: If a letter possesses the attributes pointed, dark, and belongs to the solar group, then the
appropriate embedding marker is Kashidal.

e Rule 2: If a letter is pointed, dark, and classified as a lunar letter, then the embedding marker is
the Zero-Width Joiner (ZWJ).

Integrating Rough Set Theory with Arabic Text Steganography for Improving Data Security

FIGURE 5.

o
File Edit Code View Flots Session Bulld Debug Profile Tools Help
0 - Op - (= - « Adding =
decttd = ©) Acabic attiibutes® < © | resd e =
Sowce onSave | T - +Run | e * Source =
10 -
11 # view the discretized data
12z 1I‘\fu!h] <-read.table("Arabic letters.csv” header=TRUE,sep=",")
13
14 dectbl<-5F.asDecisienTable(inforbl,decision.attr = 7,indx.nominal = €(1:63)
15 IND=BC.IND.relation.RST(dectbl,feature.set = €(1:6))
16 IMDLesplit(dectbl, do.call(paste,dectbl .c(1:63]))
17
18 - BC.LU.approximation.RST(dectb,InND)
1 a ing_decision col._ kashidal
20 lw.wn_iusman <-Varlslower.approximation SKASHIDAL
21 Upp_app_kashidal<-varliupper.approximationiKASHIDAL 7
181 (lop Level) = Rsar
QR - RAA2 - C/Usses el OneOrive/Desktop/Rough Sets/Arsbic siributes/ =
B e i e T .
7 ves NO “uo YES NO MO w3
S ¥ES NO NO VES NO VES
pointed Un.pointed Noorani Barkness Sun Moon Decision_start.embeding
2 YES NO NG YES NO YES Wl
3 ves NG NG VES NO YES w3
19 YES NO NO YES NO YES w3y
20 YES NO NO YES NO YES 2wl
$TYES NO NO YES VI
pointed un. pmnma Noorani Darkness Sun Moon Decision_start.embeding
3 vES NO Ne YES YES WO KASHIDAL
4 YES NO NO YES YES MO KASHIDAL
] VES NO NO VES YES MO SKIP
11 veS No NO YES YES mO SKIF
13 YES NO NG YES YES MO KASHIDAL
s vES NO No VES YES MO KASHIDAL
17 YeS NO NG YES YES mO KASHIDAL -

© Rstudio
file Edit Code View Plots Session Build Debug Profile Tools Help
O -0y - o A Gotofile/fun - Addins -
dectbl * @ Arabic attributesR * @ read fileR =]
SourceonSave | 4 # - Srun | S+ 4 source -
14 dectbl<-SF.asDecisionTable(infotbl,decision.attr = 7,indx.nominal = ¢(1:6)) -

15 IND=BC.IND.relation.RST(dectbl,feature.set = c(1:6))
16 1INDl=split(dectbl, do.call(paste,dectb1[,c(1:6)1))

18 varl <- BC.LU.approximation.RST(dectbl,IND)

19 #for start Hiding_decision col._kashidal

20 Low_App_kashidal <-varl$lower.approximationSKASHIDAL
21 Upp_App_kashidal<-varlSupper.approximationSKASHIDAL
22 pound_appl=setdiff(Upp_app_kashidal,Low_app_kashidal)
23 #print("Bound_appl=",Bound_Appl)

24 ul=c(1l:nrow(dectbl))

25 Outer_Regionl=setdiff(Ul,Upp_App_kashidal)

221 | (Top Level) =

R - R442 - Cyusers/dell/OneDrive/Desktop/Rough Sets/Arabic attributes/
1 28

Supper.
NO YES

approximation$zwl
YES NO YES NOL NO YES YES NO YES NO2 NO YES

10
YES NO YES NOS

YES NO

NO YES YES NO NO YES NO NO YES NO NO YES

7
NO YES NO YES3 YES NO NO YES NO YES4

NO YES1 YES NO NO YES NO YES2
2

25 -

YES NO3 NO YES YES NO YES NO4

16

5

YES NO
20
Supper.approximation$KASHIDAL
YES NO NO YES YES NO]. YES NO NO YES YES NOZ YES NO NO YES YES NO3 YES NO NO YES YES NO4
9 1n
YES NO NO YES YES NOE YES NO NO YES YES NOG YES NO NO YES YES NO7

approximations K+zws'
YES NO NO VESL NO YES YES NO NO YES2 NO YES
1 6

Supper.

NO YES YES NO

NO YES3 NO YES YES NO NO YES4
18 22

17

B proje None) =
Envionment History Connections Tutorlal =0
2) | TP import Dataset = | &3 15088 - | o uat - | & -
R - ik Global Environment =
pata
O dectbl 28 obs. of 7 variables
O o LisT of 3
© mo1 List of 9
O infatbl 28 obe. of 7 variables
Flles Plots Packages Melp Viewer Pressatation =0
Qlfoider | © Fie - O Detete = Rename G -
c dell - OmeDrive © Desktop * Rough Sets
3
9 RData 498 Apr 8, 2025, %16 PM
Rhistory 16%8 Apr 8, 2025, 916 PM
e 17KB Apr 1, 2025, 12:05 P
LS 2678 Mar 31, 2025, 126 PN
results from running Rough set in A
Asabic lettors.cov s13e Apr 8, 2025, 919 P

The running for the lower and upper approximate for kashidal.

= o X

B Project: (None) -

Environment History Connections Tutorial =0

% & 5 import Dataset = | & 190MiB - | & List = -

R * ik Global Environment =

w ciscur =
O INDL List of 9
©infotbl 28 obs. of 7 variables
Ovarl List of 3
values
Low_App_kash.. integer (empty)
Upp_App_kash.. Named int [1:7] 3 4 9 11 13 15 17
Files Plots Packages Help Viewer Presentation]
Qiroider © File » | © pelete = Rename G -
€ > Users > dell » OneDrive > Desktop > Rough Sets > Arabic attributes
A Name Size Modified
t.
B Rpata 498 Apr 8, 2025, 9:16 PM
Rhistory 16 KB Apr 8, 2025, 9:16 PM
@) Arabic attributes R 17KB Apr 1, 2025, 12:05 PNV
B Arabic attributes. Rproj 2678 Mar 31, 2025, 1:26 Ph
pictures for ruuning
results from running Rough set in R.
Arabic letters.csv 9138 Apr 8, 2025, 9:19 PM

FIGURE 6. The generated rules.

1141

Rule 3: If a letter is unpointed, Noorani, and belongs to the solar group, the embedding marker

is also ZWJ.

Rule 4: If a letter is unpointed, Noorani, and classified as a lunar letter, then the embedding
strategy is a combination of Kashidal and Zero-Width No-Break Space (ZWS).

TABLE 4. Four Rules from Rough Set

Rules | Pointed | Unpointed

Noorani | Darkness

Sun | Moon | Embedding

1 v

v

v kashidal

v

v

ZW]

\

ZWj

=W N
AN

kl+zws

These rules form the core logic for adaptively selecting Unicode-based concealment techniques depend-
ing on the structural features of each Arabic letter.

1142 F. R. Shareef

In the second phase of the methodology, the proposed steganographic system was evaluated using
secret messages written in three languages: Arabic, English, and Persian, each varying in size. All secret
messages were embedded into a common Arabic cover text. The specifications of the secret and cover
messages are summarized in Table 5.

TABLE 5. Secret messages with sizes, cover and languages

Cover and Secret Messages | The Languages | The Number of Letters

M1 English 28

M2 English 233

M3 Persian 346

M4 995

: -

M7 2425

C Arabic (Cover) 187782

The testing environment included a laptop equipped with a 2.8 GHz CPU running Windows 11. The
entire system was developed and executed using the C# programming language. For evaluation purposes,
each secret message is denoted as M, while the Arabic cover message is denoted as C.

Seven secret messages (M1 to M7) were tested against the Arabic cover message to assess the model’s
performance in real-world text scenarios. The evaluation focused on the model’s ability to accurately
embed information based on linguistic characteristics, as well as its effectiveness in terms of hiding
capacity and cover utilization. The results are illustrated in Figure 7 and detailed in Table 6.

Sec Me: Oniginal secret Message
Upload ret Massage Upload Arabic Cover 5 =
| Stego Text

Secret Bits

Decoding

The population of
Baghdad, as of 2011 is
approximately

0001111110001
0110000100000

The population of Baghdad, as of
2011, is approximately 7,216,040,
making it the largest city in Iraq, t

&30 W] 5 S ¢ o e il B] e
D‘“d

i s, ..-.s\..J:L_lg.,i:..A olle
m,qus(r s iy U]
abilia l4g [P TI T Y

Lx(oo
IANI‘-@U-JF-.K.-JL-M-S s
EE

7,216,040, maki t 0000000000000
the largest ::, :',ﬁr'.q 0000000000000 0 om 3 Gal 305)l op ol o5y s 2 LSy '-"si‘“"""ﬂ ols . s 5l e second largest city in the Arab wo
the second largest city 0000100000000 8553, s 30, "'";;"‘ e “,,“E‘ e s (after Cairo, Egypt), and the seco
in the Arab world (after 0001111101010 g B il 253 3 1 2 g Sl PAE 3 Beis largest cily in Western Asia (after

Cairo, Egypt), and the
second largest city in
Western Asia (after
Tehran, Iran).
According 10 the
government, the
population of the

1000011001011
0100111011000
0110011000000
0100001111110
0100101010011
1001010100101
1001001101010

o S el gy
b-l-v_rﬂrn-‘-wfjl-‘f_ﬂd_.ﬁ‘hng

& B W g . -ﬁ'a-bt-u-ﬂ-uh
TLess(o Tyito g

b folia g 1A 3] e 8 | Salieg £ -,...ﬁ...,
fonl g Js . au

G0 om G Gl 5 I A5 op i Sy . iS00

S sl 1255 g3 5,2 STg Sl
sy il is e el Laaicydls, oo

2y ias IS Wy Slin e By
I.n,|l.-5h\hl-\p|ﬂJh‘K‘sl4Lh‘
e i Gy SIS alles LR

Tehran, Iran). According lo the
government, the population of the
counlry has reached 35 million, wi
million in the capital.

,al_suu:,a,,@.,‘h,-,u.&

o5 -.m.-)un s
et l_v-'d'ua- 3. wic 5 Jl-*’h'_s g

country has reached 35 1010010010111 a2, g ._.x_"_"‘_““_.s’,q

«\. e

Compress Embedding

Compress Results Results

Used Ch. 2142
»d Char.
Before compress 346

Cover Perceniage 1.4
After compross 229

Hiding Capacity 85 528

Secret Ratio
1.169

|
| Total Cover
| 187782

+ B 0O0WEa

10:17 PM

=
ENG S o) B e 2005

2 EQoexzo ~eg

FIGURE 7. An Arabic cover was added to the message 2 implementation
through an immediate GUI.

As shown in Table 6, the application of seven secret messages of different lengths reveals notable
variations in performance metrics. Specifically, Message M1 yields the lowest cover utilization percentage,
indicating minimal use of the available cover space. In contrast, Message M2 achieves the lowest secret-
to-cover ratio, suggesting efficient embedding, and simultaneously records the highest hiding capacity
percentage, reflecting superior concealment efficiency.

7. Conclusion. This study introduces a novel framework that integrates Rough Set Theory (RST) with
Arabic text steganography to enhance the accuracy, capacity, and adaptability of information hiding

Integrating Rough Set Theory with Arabic Text Steganography for Improving Data Security 1143

TABLE 6. The outcomes of real use, hiding capacity and percent coverage
of three communications, including a confidential message (both pre- and
post-compression).

Secret In Cover | Real Cover Hiding | Secret | Compression Size
Message | Bytes Size Use | Percent | Percent | Ratio | Before After
(bytes) | (char) Coverage
M1 28 187782 264 0.141 84.84 1.179 28 —
M2 233 1598 264 0.851 85.60 1.168 233 171
M3 346 2142 346 1.141 85.52 1.169 346 229
M4 995 4712 995 2.50 85.05 1.176 995 501
M5 1678 5334 1678 2.841 85.18 1.174 1678 568
M6 2391 9295 2391 4.950 84.94 1.177 2391 987
M7 2425 9024 2425 4.80 85.01 1.176 2425 959

techniques. The proposed method is structured into two main phases. In the first phase, RST is applied
to a decision table constructed from the linguistic attributes of Arabic letters—such as pointed/not
pointed, solar/lunar classification, and membership in Noorani or dark categories—to generate optimized
embedding rules. These rules are derived using upper and lower approximations, ensuring both certain
and uncertain classification cases are handled.

In the second phase, the generated rules are utilized to embed two secret bits into Arabic cover
texts using various Unicode-based techniques (e.g., Kashida, Zero-Width Joiner, ZWS, RTL mark). The
technique is designed to react dynamically to five language contexts, including particular treatment for
single characters, resulting in increased flexibility and robustness. Experimental evaluation of messages
in Arabic, Persian, and English revealed that the suggested system retains excellent hiding capacity, low
embedding distortion, and effective cover space utilization across a wide range of message durations.
The addition of a compression phase enhances the method’s scalability and performance. Overall, the
framework provides a secure, adaptable, and linguistically informed steganographic paradigm that is
appropriate for Arabic-script environments and multilingual settings.

Future study may investigate additional optimization of feature selection, application to other lan-
guages with similar structural qualities, and the incorporation of machine learning to dynamically refine
embedding strategies.

References

[1] M. Al-Gailani, “Advanced Cryptographic System: Design, Architecture and FPGA Implementation”,
Ph.D. thesis, Newcastle University - School of Electrical Electronic and Computer Engineering, 2012.

[2] A. Kumar, “Steganography- A Data Hiding Technique”, International Journal of Computer Appli-
cations, vol. 9, no. 7, 2010.

[3] H. Alshahrani and G. Weir, “Hybrid Arabic text steganography”, International Journal of Computer
and Information Technology, vol. 6, no. 6, 2017.

[4] Z. Pawlak, “Rough Sets and Theoretical Aspects of Reasoning About Data”, Institute of Computer
Science, vol. 9, 1991.

[5] Z. Pawlak, “Rough set theory and its applications”, Journal of Telecommunications and Information
Technology, vol. 3, no. 3, pp. 7-10, 2002.

[6] U. Chaudhuri, “Rough Set Based Analysis of Document Images”, M.Sc. thesis, Advanced Technology
and Development Center Indian Institute of Technology, 2017.

[7] M. Almayyahi and R. Sulaiman, “A Review on Text Steganography Techniques”, Mathematics, vol.
9, no. 21, 2021.

[8] R. Thabit, N. Udzir, and Sh. Yasin, “A comparative analysis of Arabic text steganograph”, Applied
Sciences, vol. 11, no. 15, 2021.

[9] H. Kadhim and M. Mahdi, “Novel steganography scheme using Arabic text features in Holy Quran”,
International Journal of Electrical and Computer Engineering, vol. 9, no. 3, 2019.

1144 F. R. Shareef

[10] A. Alhusban and J. Alnihoud, “A meliorated Kashida-based approach for Arabic text steganogra-
phy”, International Journal of Computer Science and Information Technology, vol. 9, no. 2, pp.
99-112, 2017.

[11] A. Shaker and F. Ridzuan, “Text steganography using extension Kashida based on the moon and
sun letters concept”, International Journal of Advanced Computer Science and Applications, vol. 8,
no. 8, pp. 286-290, 2017.

[12] F. R. Shareef, “Text steganography based on Noorani and Darkness”, Journal of Information Hiding
and Multimedia Signal Processing, vol. 12, no. 3, 2021.

[13] Y. Ma, X. Luo, and X. Li, “Selection of Rich Model Steganalysis Features Based on Decision Rough
Set a-Positive Region Reduction”, IEEE Transactions on Circuits and Systems for Video Technology,
2018.

[14] P. Pieta and T. Szmuc, “Applications Of rough sets in big data analysis: An overview”, International
Journal of Applied Mathematics and Computer Science, vol. 31, no. 4, pp. 659683, 2021.

[15] M. K. Hasan and A. Ahmed, “Arabic Text Detection Using Rough Set Theory: Designing a Novel
Approach”, IEEE Access, vol. 11, 2023.

[16] F. R. Shareef, “Arabic Text Steganography based on Arabic Astrology”, Journal of Information
Hiding and Multimedia Signal Processing, vol. 14, no. 3, 2023.

[17] A. Gutub, “High Capacity Steganography Tool for Arabic Text Using ‘Kashida’”, The ISC Int’l J
Inf Secur, vol. 2, no. 3, pp. 107-118, 2010.

[18] F. R. Shareef, “A novel crypto technique based cipher-text shifting”, Egyptian Informatics Journal,
vol. 21, no. 2, pp. 83-90, 2020.

