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Abstract. Compressed sensing, a newly developed scheme in data compression, has at-
tracted much attention in researches due to its new concepts and superior performances
over conventional techniques. Besides looking for compression performances, it would be
practical to aim at data transmission of compressed information, and few papers in this
field can be found in literature. For the transmission of compressed information, because
it is vulnerable to channel errors, error resilience for compressed information has long
been a practical topic for researches and applications. With compressed sensing, very few
amounts of coefficients are capable of reconstructing the image with reasonable quality.
In this paper, for the delivery of compressively sensed coefficients over independent and
lossy channels, reconstructed image with reasonable quality over a variety of lossy rates
can be obtained. Simulation results have pointed out that with the proposed algorithm, the
applicability and superiority in performances can be acquired over conventional algorithm
in compressed sensing.
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1. Introduction. Data compression has long been an important topic in the field of
signal processing. With the widely use of smartphone cameras or tablets, vast amounts
of multimedia contents, mostly images, have accumulated drastically. Thus, how to effi-
ciently perform data compression on the multimedia contents would be in urgent needs.
There have been successful and popular standards for image compression, including the
use of transform coding [1], like discrete cosine transform (DCT) for JPEG and discrete
wavelet transform (DWT) for JPEG2000, and vector quantization (VQ) [2], for the com-
pression of still images. With the evolution of new techniques, advancements in data
compression can also be expected, and compressed sensing technique presents new con-
cepts and some novelties over its predecessors.

Compressed sensing [3, 4] is a newly developed branch in data compression researches
in the last couple of years. It requires the sampling rate, which is far less than the Nyquist
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rate, with the capability of reconstructing the original signal to be above some acceptable
level. There is a website [5] that arranges topics in compressed sensing. Papers in this field
aim mainly at theoretic derivations [6, 7], and optimization techniques can be included to
solve compressed sensing as non-linear optimization problems [8]. From practical point
of view, there are applications to extend compressed sensing to image compression [9,
10] or watermarking [11, 12]. There are few papers that aim at the transmission of
compressed sensing signals [13], and this is the motivation to devise algorithm and conduct
experiments in this paper.

(a) (b)

(c)

(d)

Figure 1. Basic structures and notations for compressed sensing. (a) Dia-
gram of encoding part. (b) Diagram of decoding part. (c) Data transmission
with compressed sensing. (d) Notations with sparsity and incoherence in
compressed sensing.

Fig. 1 demonstrates the conventional approach in data compression. Here, we use digital
images to play the roles of input and output data. In Fig. 1(a), at the encoder, let the
input image be x. After applying compression, compressed sensing as an instance, at the
encoder, compressed signal y can be obtained. The size of y should be much fewer than
that of x. In Fig. 1(b), at the decoder, compressed signal y is ready for decoding with
the corresponding decompression technique at the decoder, again compressed sensing as
an instance. After calculations with the decompression procedures, reconstructed image
x′ can be acquired. We would expect that x and x′ look as resemble as possible. From
another perspective, the difference between x and x′ should be as small as possible.
We also note that the block of compressed sensing encoding in Fig. 1(a), and the one
of compressed sensing decoding in Fig. 1(b), can be simultaneously replaced with other
standards such as JPEG or JPEG2000 compression. It follows directly from conventional
data compression, thus these techniques share the same concept as depicted in Fig. 1.

It would be more practical for the transmission of compressed signals over the lossy
channel to the decoder, as depicted in Fig. 1(c). Corresponding to Fig. 1(a) and Fig. 1(b),
let the input image be x at the encoder. After performing compression at the encoder,
compressed signal y need to be transmitted to the decoder over the lossy channel. Due
to the channel errors induced, with the probability of pe during transmission, the re-
ception of compressed signal ỹ may be different from its counterpart y. Finally, at the
decoder, ỹ need be decompressed to obtain the reconstructed image x̃. We may expect
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the quality degradation in x̃ to compare with x′, and possible means to alleviate this
phenomenon can be devised to make error resilient transmission possible. In this paper,
besides the compression capabilities, we also aim at error resilient transmission over lossy
channels. With the proposed scheme, effects caused by channel errors can be alleviated,
and recovered image quality can be improved.

This paper is organized as follows. In Sec. 2, we briefly describe the fundamentals and
mathematical representations of compressed sensing. In Sec. 3, we present the proposed
method for error resilient transmission of compressed sensing signals over independent
and lossy channels. Simulation results are demonstrated in Sec. 4, which point out the
vulnerability of compressively sensed signals for the transmission over a single channel,
and the alleviation of image quality degradation with our algorithm for multiple channel
transmission. Finally, we address the conclusion of this paper in Sec. 5.

2. Fundamental Descriptions and Notations of Compressed Sensing. Compressed
sensing aims at looking for new sampling scheme that goes against conventional sampling
theorem, or the widely acquainted Nyquist-Shannon theorem. With compressed sensing,
a much smaller rate than twice the maximal bandwidth can be achieved to meet perfect
recovery of reconstruction.

In compressed sensing, it comprises the sparsity and the incoherence principles [14, 15],
as depicted in Fig. 1(c). By following the notations in Figs. 1(a) and 1(b), we can easily
observe Fig. 1(d) is the direct extension to Fig. 1(c). The two principles are described as
follows.

• For the sparsity principle, it implies the information rate in data compression. In
compressed sensing, it is expected to reach a much smaller sampling rate than con-
ventional one required, and it can be represented with the proper basis Ψ, Ψ ∈ CN×N ,
and C denotes the complex number in the N × N matrix. More specifically, Ψ is
the basis to reach sparsity with a k-sparse coefficient vector x, x ∈ CN×1, with the
condition that

f = Ψx. (1)

Here, f = [f1, f2, · · · , fN ]T denotes the reconstruction corresponding to the original
signal, and fi denotes the coefficients of the i th basis.
• For the incoherence principle, it extends the duality between time and frequency.

The measurement basis Φ, Φ ∈ Cm×N , which acts like noiselet, is employed for
sensing the signal f , with the condition that

y = Φf . (2)

Here, y denotes the measurement vector, as depicted in Fig. 1(a). Because m implies
the number of measurement coefficients, it should be much less than the image size
N , or m << N . We note that Eq. (2) is an underdetermined system.

In Fig. 1(b), it is the reverse process to its counterparts in Fig. 1(a). Thus, we may
reach the condition that [9]

x′ = ΨH
(
ΨΨH

)−1
y. (3)

In Eq. (3), the superscript H denotes the Hermitian operation. Considering Eq. (1) and
Eq. (2), by minimizing the l1-norm of x, i.e., min ‖x‖1, subject to ΦΨx = y, compressed
sensing guarantees the perfect recovery with probability close to 1.0. Besides, because of
looking for min ‖x‖0, or l0-minimization is an NP-hard combinatorial problem, we look
for l1-minimization instead, and this follows the implementations in [9].
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3. Proposed Algorithm. It is easily observed that sub-sampled images have high cor-
relations with each other, and these correlations may help to recover the reconstructed
image after transmission. For original image x with the size of N = K × L in Eq. (1),
x = x (i, j), 1 ≤ i ≤ K and 1 ≤ j ≤ L, the four sub-sampled images x1, x2, x3, and x4,
can be represented by

x1 = x1 (i, j) = x (2i− 1, 2j − 1) , (4a)

x2 = x2 (i, j) = x (2i− 1, 2j) , (4b)

x3 = x3 (i, j) = x (2i, 2j − 1) , (4c)

x4 = x4 (i, j) = x (2i, 2j) . (4d)

Here, 1 ≤ i ≤ K
2

and 1 ≤ j ≤ L
2
. By use of the correlations, we may expect to obtain

enhanced quality in reconstructed image for error-resilience transmission. The overall
structure can be depicted in Fig. 2.

Figure 2. Multiple-channel transmission and recovery for compressed sensing.

From the experiences in data compression [1], due to the fact that compressed multi-
media contents are vulnerable to channel errors, error-controlled transmission would be
required. During delivery from the encoder to the decoder, we employ the concept of
multi-channel transmission to alleviate the degradation of reconstructed image quality.

In Fig. 2, the four sub-sampled images x1, x2, x3, and x4 are ready for the sparsity
and incoherence calculations in compressed sensing described in Sec. 2. Correspondingly,
y1, y2, y3, and y4 can be obtained, and they are ready for the transmission over four
independent channels. Here, the channels imply the packet-loss channel with the provided
packet loss rate pe,i in Fig. 2, with the subscript e and i denoting the error induced during
transmission, and the channel number, 1 ≤ i ≤ 4, respectively. We would expect that
for transmitting the compressively sensed signals over multiple independent channels,
reconstructed quality presents much better than those delivered over the single channel.

We describe the delivery of compressed sensing coefficients and propose our algorithm
for error-controlled transmission as follows.

3.1. Image compression with compressed sensing. In this paper, we employ the
test image airport with size of 1024× 1024 in Fig. 3. It serves as the input image x in
Fig. 1(a) or Fig. 1(c). We use large test images to show the performance capabilities of
compressed sensing.

By following [9], for compressed sensing, we choose K1 = 4, 000 coefficients in Ψ in
Eq. (1), and K2 = 80, 000 coefficients in Φ in Eq. (2), from the 1024× 1024 = 1, 048, 576
pixels in the original image. With this setting, compression ratio of 262 times can be
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Figure 3. Test image of airport, with size of 1024× 1024.

reached. Figure 4 presents the reconstruction with compressed sensing coefficients after
decompression, with the peak signal-to-noise ratio (PSNR) of 25.159 dB. Subjective and
objective qualities in Fig. 4 serve as the baseline for the comparison with the following
simulations for lossy transmission.

Figure 4. Compressed sensing of Fig. 3 with K1 = 4, 000 and K2 =
80, 000. Resulting PSNR = 25.159 dB.

3.2. Transmission of compressed sensing coefficients over multiple lossy chan-
nels. With the extension to Fig. 1(d), in Fig. 2, compressed sensing coefficients from the
four sub-sampled images, or y1, y2, y3, and y4, are ready for transmission over lossy
channels, with similar concepts from [1, 16, 17]. The four channels are independent, and
each channel corresponds to the lossy probability of pe,1, pe,2, pe,3, and pe,4, respectively.
For example, if pe,1 = 0.25, it means that 25% of the compressed sensing coefficients
may be lost during delivery. After transmission, coefficients of ỹ1, ỹ2, ỹ3, and ỹ4 can
be received at the decoder. Due to the possible loss during transmission, ỹi may not be
identical to yi, 1 ≤ i ≤ 4.
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3.3. Recovery of compressed sensing coefficients and reconstruction of image.
For transmission over lossy channels, every compressed sensing coefficient experiences
the loss rate pe, and it may be lost during transmission as depicted in Fig. 1(d). To
alleviate the reconstruction quality, compressed sensing coefficients may be transmitted
in parallel over multiple channels, and we choose four channels in this paper as depicted
in Sec. 3.2 and in Fig. 2. Due to the high correlations between sub-sampled originals,
compressed sensing coefficients tend to reach high correlations at the same transmission
order. Once the coefficient is lost, it should be recovered from corresponding coefficients
in other channels.

As we can see from the decoder part in Fig. 1(d), after the reception of compressed
sensing coefficients ỹ, it follows the reverse operation to the encoding counterpart in
Eq. (2):

f̃ = Φ−1ỹ. (5)

Next,

x̃ = Ψ−1f̃ = Ψ−1Φ−1ỹ. (6)

We may expect that for transmission over the single channel, due to channel error in ỹ,
error propagation may cause the quality degradation in the reconstructed image of x̃. By
use of multiple channel transmission, reconstruction quality can be improved.

Due to the randomness in the packet-loss channels, it would not be as easy as recon-
structing the scenario in Fig. 2. Still, we make comparisons with the coefficients of ỹ1,
ỹ2, ỹ3, and ỹ4 at the same position in the four channels. Suppose that we are going to
examine the coefficient relationships at position k, or relationships of ỹ1[k], ỹ2[k], ỹ3[k],
and ỹ4[k] are ready to be checked. We first sort the magnitudes of the four received coef-
ficients, |ỹi[k]|, 1 ≤ i ≤ 4, in decreasing order. Without loss of generality, we assume that
|ỹ1[k]| ≥ |ỹ2[k]| ≥ |ỹ3[k]| ≥ |ỹ4[k]|. And there are several cases that are possible for the
recovery of compressed coefficients. We omit the case that four coefficients are received
correctly, or ỹi[k] = yi[k], 1 ≤ i ≤ 4, because no reconstruction is necessary.

• Suppose one coefficient among the four is lost in this case. If the smallest magnitude,
or |ỹ4[k]|, is smaller than some threshold α (for example, α = 5%) of the magnitude
of the third coefficient, or |ỹ4[k]| < α |ỹ3[k]|, the fourth coefficient is recovered by
taking the median of the remaining three coefficients, or

ỹ4[k] = median (ỹ1[k], ỹ2[k], ỹ3[k]) = ỹ2[k]. (7)

• Suppose two coefficients among the four are lost in this case. When |ỹ4[k]| and |ỹ3[k]|
are both smaller than 5% of |ỹ2[k]|, we assume that ỹ4[k] and ỹ3[k] are lost. The lost
coefficients are replaced by

ỹ4[k] = median (ỹ1[k], ỹ2[k]) , (8a)

ỹ4[k] = median (ỹ1[k], ỹ2[k]) . (8b)

• Suppose three coefficients among the four are lost in this case, or |ỹ4[k]|, |ỹ3[k]|, and
|ỹ2[k]| are all smaller than 5% of |ỹ1[k]| . All the lost coefficients are replaced by the
first coefficient:

ỹ4[k] = ỹ1[k], (9a)

ỹ3[k] = ỹ1[k], (9b)

ỹ2[k] = ỹ1[k]. (9c)

• Suppose all the four coefficients are lost in this case if the magnitude of the first
coefficient lie below some small value around zero. No reconstruction is applicable.
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After gathering all the recovered coefficients, reverse procedures to the encoding part
should be performed as depicted in Fig. 2. The four sub-sampled images can first be
recovered with Eq. (6), and by following Eqs. (4a) to (4d), reconstructed image from
sub-sampled ones can be obtained.

With our algorithm, we expect to obtain enhanced performances with multiple-channel
transmission in Fig. 2, than those with single-channel transmission, as depicted in Fig. 1(d).

4. Simulation Results. In our simulations, as we stated before, we choose the test
image of airport, with the picture sizes of 1024× 1024, for conducting simulations. As
we noted in Sec. 3, in each sub-sampled image with size of 512× 512, we set K1 = 1, 000
compressed sensing coefficients, and K2 = 20, 000 for noiselets for keeping the compression
ratio.

Figure 5 demonstrates the resulting performance after experiencing 25% of loss rate over
the single channel, causing the PSNR of 17.370 dB. Degradations can be easily observed
by comparisons between Fig. 5 and Fig. 4. For simplicity, we split the original image into
four sub-sampled images; each one experiences the compression with compressed sensing.
For keeping the compression ratio, we choose K1 = 1, 000 and K2 = 20, 000 for each
sub-sampled image with the size of 512×512, which corresponds to 25% of that in Fig. 4.
Suppose that there are four channels for transmission in this paper. Then, coefficients
corresponding to each sub-sampled images are transmitted over four independent channels
in Fig. 2. Suppose Channel 1 is down, and Channels 2 to 4 are alive, which also results
in the loss rate of 0.25. In Fig. 6, we demonstrate the scenarios described above. For
making up the lost coefficients in Channel 1, we take the median value of corresponding
coefficients in Channels 2, 3, and 4 to replace the lost coefficients in Channel 1. Recovered
image is depicted in Fig. 7, with the PSNR = 23.467 dB. We can easily observe that the
quality in Fig. 7 is much better than that in Fig. 5. Moreover, due to channel loss, even the
reconstruction scheme is applied, the reconstructed quality in Fig. 7 is still a bit inferior
to that in Fig. 4.

Figure 5. Compressively sensed image of Fig. 3 with K1 = 4, 000 and
K2 = 80, 000. Loss rate pe = 0.25. Reconstructed PSNR = 17.370 dB.

Next, we consider transmitting compressed sensing images over independent lossy chan-
nels with pe,i = 0.25 for the ease of comparisons with Fig. 8. As we know, in Fig. 6, because
only Channel 1 is down, we may imply that it is a deterministic channel, and hence the
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Channel 1: down Channel 2: 23.596 dB Channel 3: 23.582 dB Channel 4: 23.559 dB

Figure 6. Transmission over multiple independent channels, with K1 =
1, 000 and K2 = 20, 000 for each channel. Suppose Channel 1 is down or
pe,1 = 1.00, and Channels 2 to 4 are alive or pe,2 = pe,3 = pe,4 = 0.00. It
leads to total loss rate of 0.25.

Figure 7. Recovery of coefficients in Channel 1 by taking the median from
corresponding channels, and reconstruct the image from recovered Channel
1 coefficients and received coefficients from other channels. Reconstructed
quality in PSNR = 23.467 dB.

reconstruction would be much easier than the random lossy channel. For the four inde-
pendent channels in Fig. 2, we perform random loss with the probabilities of pe,i = 0.25.
Simulation results are depicted in Fig. 9. For the received image in Channel 1, because
the large magnitude coefficients may be lost during transmission, severe degradation can
be observed. For the reconstructed sub-sampled images from Channels 2 to 4, they result
in similar qualities. With the reconstruction schemes described in Sec. 3.3, reconstructed
image can be recovered by taking the median from the correctly received channels in
Fig. 9.

We can also make comparisons between the results in Fig. 7 and Fig. 9. Reconstructed
quality in Fig. 7 presents better than that in Fig. 9 even when the loss rates are 0.25 for the
two cases. On the one hand, because we set the condition that Channel 1 is down in Fig. 6,
which may imply the deterministic loss of Channel 1, reconstructed coefficients can all be
correctly recovered. On the other hand, because we apply random loss for all coefficients
among four channels, erroneous detection of lost coefficients may be expected, which leads
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Table 1. Comparisons of difference loss rates between single- and multiple-
channel transmission for test image airport. Reconstructed image quality
is represented by peak signal-to-noise ratio in dB.

Loss rate Single-channel reconstruction Multiple-channel reconstruction

0.10 19.318 dB 22.423 dB
0.25 17.370 dB 22.044 dB
0.50 8.644 dB 20.195 dB

Channel 1: 8.392 dB Channel 2: 16.864 dB Channel 3: 17.458 dB Channel 4: 17.091 dB

Figure 8. Transmission over multiple independent channels. Loss rate
pe,i = 0.25 for each channel. Results in Channel 1 performs inferior because
coefficients with large magnitudes are lost due to channel errors.

Figure 9. Recovery of coefficients by taking the median from correctly
received channels. Reconstructed quality in PSNR = 22.044 dB.

to the degradation in image quality. From the results presented above, proposed algorithm
point out the applicability for transmitting over lossy channels.

Finally, we make comparisons between the single-channel transmission and multiple-
channel transmission over a variety of loss rates in Table 1. With the higher loss rates,
reconstructed image quality becomes degraded. Besides, for the transmission over multiple
channels with the recovery scheme provided, we can obtain better performances for the
transmission with compressed sensing.
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5. Conclusions. In this paper, we observed the vulnerability of compressively sensed
information for transmission over lossy channels, and proposed our algorithm to trans-
mit compressed information over multiple independent and lossy channels. Based on the
experiences in the field of data compression, there is the need for protecting compressed
coefficients, including compressively sensed ones, from channel errors for transmitting over
lossy channels. There are high correlations between sub-sampled images in the original
image. By use of transmitting compressively sensed coefficients from sub-sampled images,
lost coefficients have the possibility to be recovered by use of taking the median from the
correctly received coefficients from other channels. Simulation results have presented the
enhanced performances with multiple channel transmission over single channel transmis-
sion of compressively sensed coefficients. We are going to look for other effective means
to ensure the error-controlled transmission for compressed sensing of images.
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