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Abstract. This paper introduces advanced techniques to enhance image accuracy by
integrating spectral clustering with multiple views. The methodology is explained in de-
tail, including mathematical models and implementations, to achieve high-quality image
segmentation. The paper begins by describing the spectral clustering approach, which
segments images using values and eigenvectors of matrices derived from data similarity.
Key steps are outlined, such as constructing the similarity matrix, calculating the degree
matrix and Laplacian, performing eigenvalue analysis, and clustering data in the em-
bedded space. A multifaceted spectral clustering mechanism is also presented to improve
segmentation accuracy. It combines multiple representations of an image by constructing
similarity matrices for each representation and aggregating them into a unified graph.
The spectral embedding technique is highlighted for its ability to project high-dimensional
data into lower-dimensional space, improving scalability. Finally, the paper explains how
multiple views such as edge detection, color-based segmentation, and multiscale analysis
are integrated to enhance both the interpretability and accuracy of the results.
Keywords: Spectral Clustering, improve image accuracy, Similarity matrix

1. Introduction. Modern image processing increasingly relies on advanced mechanisms
that integrate multiple display methods to enhance accuracy. One promising approach
is spectral clustering, a technique based on graph theory and eigenvalue decomposition.
This method has demonstrated significant potential for partitioning complex data sets,
including image data, by leveraging the spectral properties of similarity matrices [1].
Moreover, spectral clustering is particularly effective for image segmentation because it
captures global data structures and can handle non-convex clusters more efficiently than
traditional methods such as k-means.

When applying spectral clustering to image processing and a variety of display methods
can be utilized to improve the fidelity of the segmentation and the overall classification
accuracy and these methods often rely on different visualization techniques that highlight
various aspects of the image and such as contrast enhancement and multi-scale resolution
and spectral band selection and to aid in the extraction of meaningful features from
complex images [2].

One effective mechanism is multi-view spectral clustering and where multiple repre-
sentations of the same image are generated through different preprocessing or feature
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extraction methods. Each view captures unique information about the image and com-
bining these views within the spectral clustering framework leads to more robust segmen-
tation results. Multi-view spectral clustering works by constructing similarity matrices
for each view and combining them into a unified graph for the final clustering process
and where eigenvalue decomposition reveals the optimal segmentation structure and this
approach improves accuracy by leveraging the diverse perspectives of the image’s features
also another mechanism involves spectral embedding methods and which project high-
dimensional image data into a lower-dimensional space where clustering becomes more
tractable and the accuracy is enhanced by reducing the influence of noise and irrelevant
features while preserving essential structural properties of the image. Spectral clustering
can then operate in this embedded space and facilitating more precise identification of
clusters within the image and application of spectral clustering to image segmentation
typically involves constructing a similarity matrix based on pixel or feature similarity
within the image and this matrix is then used to form a Laplacian matrix and which
encodes the relationships between data points (pixels or superpixels) and the eigenvectors
of the Laplacian matrix and corresponding to the smallest eigenvalues and provide the
spectral embeddings that reflect the image’s intrinsic structure. By clustering these em-
beddings and one can segment the image into distinct regions that correspond to objects
or features within the image [3, 4].

Following previous research [5, 6, 7, 8, 9] key challenges addressed by this method in-
clude handling non-linear boundaries between regions and dealing with high-dimensional
data and where conventional methods often fail due to the complexity of real-world image
features. Spectral clustering’s reliance on the eigen-decomposition of similarity matri-
ces allows it to overcome these challenges by capturing the global geometry of the data.
Incorporating multiple display methods and such as color mapping and intensity-based
segmentation and edge detection and further improves the interpretability and accuracy
of spectral clustering results and these display methods highlight different image charac-
teristics and when used in conjunction with spectral clustering and allow for more detailed
and accurate segmentation outcomes. For instance, and edge detection can help refine
the construction of the similarity matrix by ensuring that boundaries between regions
are more sharply defined and while color-based segmentation can inform the selection of
appropriate spectral bands for clustering [10, 11].

2. Literature review. In the field of image fusion from multiple sources of the elec-
tromagnetic spectrum and fusion mechanisms play an important role in improving the
accuracy of the information provided to operators in different practical environments.
For example, and taking advantage of the non-visible information of the electromagnetic
spectrum and such as long-range infrared (LWIR) and short-range infrared (SWIR) and
provides an important advantage in detecting objects that cannot be seen with the naked
eye and such as thermal objects obscured behind objects. Other. Combining this informa-
tion with visual images can help determine the relative locations of targets within a scene
and there are many ways to display images from multiple sensors simultaneously. The
most prominent of these methods is computational fusion and where relevant information
from different sensor images is combined into a single composite image. On the other
hand, and each sensor image can be displayed separately to allow the operator to select
the important information himself and reducing the operation’s reliance on algorithms to
detect useful information. Despite the benefits of computational merging in reducing the
number of visual sources that the operator must focus on and one disadvantage is that
some information is lost during the merging process and which may affect the quality of
the final image. Computational fusion evaluations are an important topic in computer



556 L. A. Tawfeeq, S. Sh. Altyar, S. Sh. Hussein

vision research and with most metrics based on computational principles such as pre-
serving edge details at the pixel level or at the whole image level [12]. Although these
metrics provide objective assessments of image quality and they do not take into account
information that is important to the task to be performed and are not always accurate
in predicting human user performance [13] and to compensate for this gap and question-
naires are used to evaluate user experience and preferences related to embedded images
[14]. However, and these questionnaires remain insufficient to predict human performance
on various tasks.

Studies have shown that human performance with combined images varies depending
on different tasks such as detection and discrimination and recognition and visual search
[15]. For example and a study conducted in an aviation context showed that integrating
information from multiple sensors can improve pilots’ ability to make rapid decisions [16].
However, and these studies have not reached conclusive results due to variability in the
methods used and the nature of the tasks tested and to evaluate cognitive processes related
to arithmetic fusion and cognitive fusion (which occurs when the user relies on image
processing independently) and systematic factorial technology (SFT) was used. This
tool allows analysis of important cognitive properties such as cognitive working capacity
and autonomy and perceptual architecture and stopping rule [17]. Using SFT and it
can be determined whether the therapist Is able to efficiently assimilate multiple sources
of information or if there are cognitive obstacles that impede this integration. Finally,
Dao and coworkers [18] presented an interesting review research paper that provides a
comprehensive overview of information hiding techniques in digital systems.

The perceptual capacity coefficient represents the ratio of the user’s actual performance
when information from several sources is available to the performance expected based on
a model that relies on presenting each source separately. If the coefficient is greater than
1 and it means that there is processing facilitation between the combined information.
If the coefficient is less than 1 and this indicates that there are limitations in the user’s
ability to effectively process information from multiple sources and Table1. comparing
different studies based on the text provided:

Table 1. compares the key studies in the field and highlighting their focus and method-
ology and advantages and disadvantages.

Table 1. Comparing Studies based on the Text Provided

Study Focus Method Advantages Disadvantages Applications

[19]
Use of non-visible EM

spectrum for environment info
Sensor fusion

(LWIR, SWIR and visible spectrum)

Detects occluded
heat-producing objects,

night vision

Limited to specific types
of tasks (e.g., target detection)

Surveillance,
target detection

[20]
Complementary info from
infrared and visible sensors

Cognitive fusion
Provides full sensor

information to the operator
High cognitive load
on the operator

Target localization,
surveillance

[21]
Algorithmic fusion

for image combination
Combines sensor data into

one composite image
Reduces visual info overload,
can create emergent features

Loss of some sensor
info due to filtering

Image processing,
visual surveillance

[22]
Performance differences in

algorithmic fusion
Laplacian pyramid fusion

Reduces operator’s attention
to multiple sources

Loss of info from
individual sensors

Aviation, military
applications

[23]
Cognitive fusion as

alternative to algorithmic fusion
Side-by-side image

presentation
Complete info presented

to the operator
Relies on cognitive

processing for integration
Defense, surveillance
and decision-making

[24]
Quality metrics
for image fusion

Edge preservation metrics
Provides objective

assessment of image quality

Does not account for task
relevance or human

performance

Computer vision,
image analysis

[25]
Subjective user experience

in image fusion
User experience
questionnaires

Addresses user
preference and comfort

May not predict actual
task performance

Display design,
user interface improvement

[26]
Human performance
with fused imagery

Subjective and objective
measures combined

Combines image quality with
human performance

Methodological
variation across studies

Human-centered
design,surveillance

[16]
Human performance in

aviation with image fusion
Detection, recognition

and search tasks
Applies to real-world
scenarios like aviation

Confounding variables
such as task

description differences

Aviation,
military operations

3. Methodology. The methodology focuses on the development of advanced techniques
to improve image accuracy by integrating spectral clustering with multiple display meth-
ods and this section describes the detailed methodology and mathematical models and
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the implementation process to achieve high-fidelity image segmentation results. We be-
gin by defining the spectral clustering approach and followed by an explanation of the
mechanisms for integrating display methods and including relevant equations [27, 28].

3.1. Spectral Clustering Approach. Spectral clustering is based on graph theory and
aims to partition data (in this case and images) by leveraging the eigenvalues and eigen-
vectors of matrices derived from data similarity. In the context of image segmentation
and steps involved in spectral clustering include:

3.1.1. Constructing the Similarity Matrix. The similarity matrix W represents the rela-
tionship between different data points (pixels or features) and the elements of W are
computed using a similarity function and typically based on pixel intensity or other fea-
tures (e.g. and texture and color). A common choice for the similarity function is the
Gaussian (RBF) kernel [29]:

W (i, j) =
exp(∥xi − xj∥2)

2σ2
(1)

where xi and xj are feature vectors for pixels i and j and σ is a scaling parameter that
controls the width of the neighborhood.

3.1.2. Degree of Laplacian Matrices. Once the similarity matrix W is constructed and
the degree matrix D is computed as the diagonal matrix where each element is the sum
of the corresponding row in W [30]:

D(i, i) =
∑
j

W (i, j) (2)

The unnormalized Laplacian matrix L is defined as:

L = D −WL (3)

Alternatively, a normalized Laplacian matrix Lsym can be used:

Lsym = D− 1
2LD− 1

2 = I −D− 1
2WD− 1

2 (4)

3.1.3. Eigenvalue Decomposition. The next step involves performing eigenvalue decom-
position on the Laplacian matrix L or Lsym and the eigenvectors corresponding to the
smallest k eigenvalues are used to embed the data into a lower-dimensional space and the
matrix of eigenvectors U and where each column is an eigenvector and is formed [31]:

U = [u1, u2, . . . , uk]

3.1.4. Clustering in the Embedded Space. After obtaining the spectral embedding and
clustering is performed in this new lower-dimensional space. A common choice is to apply
k-means clustering to the rows of the eigenvector matrix U and where each row represents
the embedding of a pixel or a feature:

minimize

l∑
i=1

∥Ui − ccluster(i)∥2 (5)

where ccluster(i) represents the cluster centroid of point i and the result is a segmented
image based on the identified clusters [32].

3.2. Multi-View Spectral Clustering. Multi-view spectral clustering enhances seg-
mentation accuracy by incorporating multiple representations (or ”views”) of the image.
Each view is generated by different preprocessing techniques such as contrast enhance-
ment and multi-resolution analysis or spectral band selection and these views capture
distinct image
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3.2.1. Constructing Similarity Matrices for Each View. For each view v and a similarity
matrix Wv is constructed using the RBF kernel or another similarity metric and the
similarity matrices from all views are then combined into a unified graph using a weighted
sum or another fusion strategy [33]:

W =
V∑

v=1

av wv (6)

where av represents the weight of view v and V is the total number of views.

3.2.2. Unified Laplacian Matrix. From the combined similarity matrix W and the degree
matrix D and Laplacian matrix L are computed as described earlier and this unified
Laplacian represents the integrated structure of the data from all views and enabling a
more comprehensive segmentation process.

3.3. Spectral Embedding. Spectral embedding is an important technique that projects
high-dimensional data into a lower-dimensional space where clustering is more tractable
and the embedding is achieved by using the eigenvectors of the Laplacian matrix and
which represent the intrinsic structure of the data [34, 35].

3.3.1. Embedding in Lower Dimensions. The eigenvector matrix U also containing the
top k eigenvectors and forms the spectral embedding. Each pixel in the image is mapped
into this k-dimensional space:

yi = [u1(i), u2(i), . . . , uk(i)] (7)

The resulting embedding yi preserve the global structure of the image also facilitating
more accurate clustering.

3.3.2. Noise Reduction. By projecting the data into a lower-dimensional space also spec-
tral embedding reduces the influence of noise and irrelevant features and improving seg-
mentation accuracy and the clustering algorithm (such as k-means) then operates on these
embedded features to form clusters.

3.4. Integration with Display Methods. To improve interpretability and further en-
hance accuracy and multiple display methods such as color mapping and edge detection
and intensity-based segmentation are incorporated into the spectral clustering framework
[36].

3.4.1. Edge Detection for Similarity Matrix Construction. Edge detection algorithms (e.g.
and Canny and Sobel) can be used to refine the similarity matrix by ensuring that sharp
boundaries between different regions are emphasized and this can be achieved by assigning
higher similarity values to pixels within the same region and lower values across edges.

3.4.2. Color-Based Segmentation. Spectral band selection and combined with color map-
ping and helps highlight specific image features. For example, and different color channels
(RGB and infrared) can be used as distinct views in multi-view spectral clustering and
ensuring that important spectral information is not lost during clustering [37, 38].

3.4.3. Multi-Scale Analysis. Multi-scale image processing techniques (e.g. and wavelet
transform) can be applied to capture features at different levels of granularity and these
multi-scale representations provide additional views that enhance the clustering process
by capturing both fine details and broader patterns in the image.

4. Results.
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4.1. Dataset Description. The experiments utilized the BSDS500 dataset (Berkeley
Segmentation Dataset and Benchmark), which contains 500 natural images with resolu-
tions ranging from 481×321 to 321×481 pixels. The images cover diverse scenes, including
landscapes, urban environments, and objects, providing a robust benchmark for evalu-
ating segmentation accuracy. To align with computational constraints, all images were
uniformly downscaled to 128×128 pixels using bicubic interpolation with anti-aliasing to
preserve edge details. Additionally, RGB-to-grayscale conversion was applied to 30% of
the dataset to analyze clustering performance under reduced color channels. The dataset
was partitioned into 400 images for training (to optimize parameters like σ in the RBF
kernel) and 100 images for validation. Challenges such as occlusions, texture variations,
and uneven illumination were intentionally included to test the robustness of the proposed
multi-view spectral clustering approach.

4.2. Image Downscaling in Image Processing and Data Analysis: A Study of
Dimensionality Reduction and Performance Improvement. In the field of image
processing and data analysis and image downscaling is a fundamental technique that aims
to improve computational efficiency and improve system performance. Images captured
or used in practical applications are usually of high dimensions and resolution and which
requires significant memory and processing resources and to overcome this challenge and
images are downscaled to smaller sizes while preserving the essential details that play an
important role in the analysis and this step is essential when using complex algorithms
such as spectral clustering or cluster analysis that require intensive data processing and
the primary importance of image downscaling is to improve computational efficiency [39].
For example, and when the dimensions of an image are reduced from its original size
to a smaller size (such as 128×128 pixels) and the number of elements that need to be
processed is greatly reduced and this step reduces the load on memory and speeds up the
subsequent calculations. In high-resolution images and number of pixels is large and which
leads to an increase in the size of the data matrices that algorithms deal with and such
as the similarity matrix or the Laplacian and thus increases the time required to process
this data. Reducing aliasing through the use of smoothing techniques (Anti-Aliasing)
When the image is reduced and it may occur Aliasing phenomenon that leads to visible
distortions in the resulting image and to avoid this and anti-aliasing techniques are used
and which distribute the pixel density in a way that prevents sharp distortions in the image
and this ensures that the reduced image retains sufficient detail without losing its clarity
significantly and which helps maintain the accuracy of the final results after analysis.
By reducing the dimensions of the image and number of pixels that represent the image
is reduced and thus reducing the amount of data that is processed and this is especially
important in algorithms based on spectral analysis and where similarity matrices are built
based on the distances between pixels. When working with a smaller number of pixels
and efficiency of the algorithm can be greatly improved [40, 41]. For example, and in
spectral clustering and constructing the Laplacian matrix and extracting the eigenvalues
becomes easier and faster when dealing with smaller matrices. Although downscaling the
image greatly improves the processing efficiency and it is necessary to strike a balance
between downscaling and maintaining image resolution. If the downscaling is excessive
and the image may lose some important details that may affect the analysis results. In
contrast and downscaling the image to an appropriate level using anti-aliasing can achieve
a balance between performance and accuracy and allowing algorithms to recognize key
patterns and details in the image without losing important information as in Figure 1.

4.3. Analyzing and Creating a Similarity Matrix Using Nearest Neighbors.
An Applied Study on Spectral Clustering: In image processing and especially in spectral
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Figure 1. Grey thumbnail

clustering and the similarity matrix is an essential tool for determining the relationship
between points or pixels in an image and this matrix is used to measure the similarity of
points based on certain criteria and such as the distance between these points and this
study focuses on constructing a similarity matrix using Nearest Neighbors and explaining
how to use it with the Laplacian matrix to apply spectral analysis [42].

4.4. Constructing a Similarity Matrix Using Nearest Neighbors: In this step
and a similarity matrix is constructed using the concept of nearest neighbors and the
main idea is to calculate the distances between pixels in the image and choose a set
of nearest neighbors for each pixel and so that the degree of similarity between each
pixel and its neighbors is calculated based on the distance between them as shown in
Figure 2. The image is converted into a grid of binary coordinates (pixels), where each
pixel is represented by its spatial location (row and column indices). To organize these
coordinates, the np.column stack function is used to merge the row and column indices
into a single matrix. This matrix explicitly maps each pixel to its position in the image.

Subsequently, the Nearest Neighbors algorithm is applied to determine the closest neigh-
bors for each pixel. The algorithm searches for a predefined number of neighboring pixels
(set to n neighbors=10 in this example) based on their spatial proximity. To optimize
the search efficiency, the kd tree algorithm—a space-partitioning data structure—is em-
ployed. This significantly accelerates the process of identifying nearest neighbors in high-
dimensional spaces.

Once the nearest neighbors are identified, the pairwise distances between pixels are
calculated. These distances serve as the foundation for constructing a similarity matrix,
which quantifies the relationships between pixels in subsequent clustering steps.

After obtaining the closest neighbors for each pixel and the similarity score between each
pixel and its neighbors is calculated using a Gaussian kernel function and this function
depends on the distances between the closest neighbors and where the similarity decreases
as the distance between the pixels increases and the effect of distance is controlled using
the sigma parameter and which determines how sensitive the similarity is to large distances
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[43]. A sparse similarity matrix is created. Once the similarity values between each pixel
and its neighbors are calculated and these values are stored in a sparse matrix and this
is done to reduce memory consumption and maintain the efficiency of the calculations
and as values representing pixels that are not neighbors are not stored and this matrix is
represented by three lists [42] rows represent pixels.
cols represent neighbors of pixels.
data represents similarity values.

4.5. Calculating the Laplacian Matrix. After constructing the similarity matrix and
the Laplacian Matrix is calculated and a mathematical tool used in spectral clustering to
analyze the structure of data and the Laplacian matrix is calculated by subtracting the
similarity matrix from the degree matrix and which represents the sum of the similarity
scores for each pixel. Once the Laplacian matrix is calculated and it is displayed using a
heatmap and which provides a visual means of analyzing the distribution of similarities
and relationships between pixels. Brighter areas of the heatmap indicate strong associ-
ations (high similarity) between pixels and while darker areas indicate lower similarity
[44]. Figure 2 shows neighbors of the aplasia matrix.

Eigenvalue Analysis and Spectral Embedding Extraction in Spectral Clustering in the
framework of spectral clustering analysis and the analysis of the eigenvalues and eigen-
vectors of the Laplacian matrix is an essential step to understand the internal structure of
the data and identify possible patterns or clusters within the image or data under study
and this analysis is based on the calculation of spectral components (Spectral Embedding)
that transforms the data from the original dimensional space to a low-dimensional space
based on spectral features as Figure.3.

Figure 2. Neighbors of the aplasia matrix

Eigenvalue Analysis and Spectral Embedding Extraction The eigenvalues and eigenvec-
tors of the Laplacian matrix are extracted using the eigh function and which calculates
the values and eigenvectors of symmetric matrices such as the Laplacian matrix and this
analysis is an integral part of the spectral clustering application.
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Figure 3. Self-values

The previously calculated Laplacian matrix is used to perform the eigenvalue analysis.
In the code and the eigenvalues and eigenvectors are calculated using the eigh function
and which returns the eigenvalues in ascending order and as well as the corresponding
eigenvectors and the first k eigenvalues and eigenvectors are extracted and these vectors
represent the low-dimensional spectral space that will be used in the clustering process
and the basic eigenvectors are the main tools for defining the new space we are working
in and these vectors transform the data into a new space and which makes the clustering
process easier because they represent the internal structure of the data more clearly.

The eigenvalues are plotted in a histogram to represent the relationship between the
different eigenvalues and their index and this plot provides a comprehensive view of the
distribution of the eigenvalues and which can be used to determine the ideal number of
clusters in the data and typically and a sharp decline in the eigenvalues can be observed
and this decline indicates the boundaries between the different clusters.

The analysis of the eigenvectors and eigenvalues is used to extract the spectral em-
bedding and which is the low-dimensional representation of the data that reflects the
underlying structure. In this low-dimensional space and clustering is easier and more ef-
ficient and this embedding helps move the data from a complex space with a lot of detail
to a simplified space that reflects only the large and important patterns.

The eigenvalue plot is usually examined to analyze the structure of the data and de-
termine the optimal number of clusters. If there is a sharp drop from one eigenvalue to
another and this indicates a clear separation between the clusters. By identifying this
drop and the ideal number of clusters into which the data should be divided can be de-
termined. After extracting the eigenvectors with the lowest eigenvalues and these vectors
are used to perform spectral clustering and the K-Means algorithm is applied to these
vectors in the spectral space to determine the final clusters and this new space represents
the most important characteristics of the data and making the clustering more accurate
and efficient as new clusters.

4.6. K-Means Clustering and Segmented Image Reconstruction. Clustering is a
fundamental technique in machine learning that is used to divide data into homogeneous
groups based on their properties. In this context and the K-Means algorithm is used as
a tool to cluster data points in the spectral space that have been previously extracted
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from the Laplacian matrix and the steps required to reconstruct the segmented image and
increase its accuracy and improve its quality will be reviewed.

After extracting the eigenvectors from the eigenvalue analysis and K-Means is used to
cluster the points in the spectral space and the number of clusters k is pre-selected and each
point in the spectral space is represented by its eigenvectors and the K-Means algorithm
distributes these points into k clusters and creating a label for each point that represents
the cluster to which it belongs. Once the clusters are identified and the segmented image
is reconstructed by calculating the average color of each cluster. A mask is used to identify
the regions of the image that belong to each cluster and this means that the average color
of each cluster is assigned to all pixels belonging to it. After the segmented image is
reconstructed and its accuracy is increased through the interpolation technique and this
is done using the resize function from the skimage library to enlarge the image while
maintaining quality. Interscaling uses different methods to estimate the values of the
pixels lost during the enlargement and which helps in improving the details. After the
image is enlarged and additional enhancements are applied using the Gaussian filter to
smooth the image and the Unsharp Mask to sharpen the details and these filters help in
improving the appearance of the image and highlighting the important features and the
parameters (such as diameter and sharpening amount) are adjusted to achieve satisfactory
results as Figure 4. The distribution of the clusters is analyzed by plotting a histogram
showing the number of pixels in each cluster and this analysis helps in understanding how
the data is distributed in the different clusters. As shown in Figure 5.

Figure 4. a: Original Image (Resized) and b: Segmented Image and c:
Enhanced Image After Clustering

5. Discussion: In this study, we propose an enhanced image accuracy method using
multi-view spectral clustering, which effectively addresses common challenges in image
segmentation by preserving high-frequency details while reducing noise. Compared to
the work of Garini et al. (2006) [45], who focused on infrared and visible image fusion
using multispectral analysis, our approach offers a more balanced trade-off between noise
reduction and detail preservation by integrating multiple display methods. Similarly,
He (2017) [?] highlighted the benefits of multi-sensor fusion for improving classification
quality; however, our method further refines these results by employing multiple views
to capture subtle image features that might otherwise be overlooked. Moreover, while
Zheng et al. (2023) [?] demonstrated that Laplacian-based fusion techniques can yield
precise segmentation outcomes, our approach extends this advantage through a multi-
view strategy that minimizes information loss and enhances robustness against challenging
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Figure 5. Distribution of Clusters

imaging conditions. Overall, these comparisons indicate that although conventional fusion
methods have achieved noteworthy progress, the proposed multi-view spectral clustering
technique presents a promising alternative that merits further investigation across diverse
datasets and more complex imaging scenarios in future work.

6. Conclusion: The importance of reducing the dimensionality of images is emphasized
as a fundamental step before applying complex algorithms such as spectral clustering.
Dimensionality reduction improves computational efficiency and reduces data overhead
without sacrificing basic accuracy. It is explained how to use eigenvalue analysis of the
Laplacian matrix to extract the spectral embedding and which facilitates the clustering
process in low-dimensional space. Finally, and it is shown how to use the K-Means
algorithm to cluster points in spectral space and reconstruct the segmented image with
improved quality.
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