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Abstract. Brain tumors are among the most sensitive tumors that must be detected in
their very early stages, otherwise they will lead to irreparable problems in the body later,
because the brain is responsible for all commands and functions in the human body. Brain
tumors occur as a result of the rapid, random and uncontrolled growth of brain cells, and
if not treated in the early stages, they can lead to major problems and even death. The
main challenge in detecting brain tumors lies in the differences in the location, shape
and size of the tumor, also the tumor in its early stages is too small to be noticed by
the human eye in MRI images, thus doctors may misdiagnose the disease in its early
stages. In response to these challenges, this research focuses on developing an approach
to detect brain tumors in MRI images using a combination of deep learning and machine
learning techniques. Convolutional neural networks (CNNs) will be used to extract key
features from MRI images and capture complex spatial patterns, after that, the extracted
features are then processed by a multi-layer perceptron (MLP) network to reduce the fea-
tures space. The MLP network undergoes a novel training process where each batch is
divided into training and test sets of equal size from each class and then the reference
point is calculated based on the arithmetic mean of each feature, after that, the Euclidean
distance is used to classify the test samples followed by the backpropagation error process
to adjust the network weights. After optimizing the feature space, the K-nearest neighbors
(KNN) algorithm is used for the final classification where KNN training involves dividing
the batches into training and test sets and extracting the performance metrics across all
epochs. The proposed model achieved an accuracy of 97% compared to the custom CNN
algorithm which achieved an accuracy of 90%.
Keywords: Convolution Neural Network, CNN, Multi-layers Perceptron, MLP, K-
nearest Neighbors, KNN, Brain Tumor, Deep Learning, Machine Learning
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1. Introduction. Brain tumors are among the most common types of tumors that di-
rectly affect the central nervous system, which may lead to various disabilities that can
occur and often lead to death. Accurate and early diagnosis of the tumor in its early
stages is of great importance in order to carry out appropriate therapeutic interventions
in a timely manner, which in turn leads to reducing the mortality rates resulting from
brain tumors [1]. Magnetic resonance imaging (MRI) is one of the most widely used
medical imaging methods in detecting tumors in general due to its high accuracy and
ability to show and display detailed anatomical structures of the area to be imaged in
the human body [2]. Despite the effectiveness and accuracy of MRI images, they require
interpretation by doctors specialized in radiology images. Therefore, this manual inter-
pretation is often subject to human error, especially in distinguishing between different
types of tumors and detecting tumors in their early stages, as it is difficult to notice
the presence of a tumor in the image due to its small size in its early stages [3]. As a
result of these challenges, there has been an urgent need to develop systems capable of
automated detection of brain tumors, as these systems benefit from artificial intelligence
techniques, both machine learning and deep learning, to support medical decision-making
for radiologists and improve diagnostic accuracy. Convolutional neural networks (CNNs)
have emerged, which have achieved exceptional results in the field of pattern recognition
in images, thanks to their great ability to extract subtle and deep features hidden within
image pixels. This has made this type of network ideal for use in the process of extract-
ing features from images in general and MRI images in particular, as this is considered
a very important step to distinguish between healthy and infected tissues, as well as to
determine the type and stage of the tumor [4,5]. Despite the great benefits of CNNs and
their ability to extract features accurately, they suffer from the high-dimensional feature
space they generate, which may lead to computational inefficiency, noise, or repetition
that can affect the performance of the algorithm [6]. In order to solve the problem of the
high-dimensional feature space resulting from CNNs, we propose in this paper a hybrid
approach that integrates a multi-layer Perceptron (MLP) network to reduce the space of
features extracted using CNNs [7]. In this paper, the MLP network will be trained in a
new batch method that ensures balanced learning across all classes by calculating a refer-
ence point for each class in the dataset by calculating the arithmetic mean of all samples
for each class, producing a single sample for each class containing the arithmetic mean
value for each feature, where this sample represents the reference point for the class and
is represented within a multidimensional space. This process improves the feature space,
making it easier to distinguish between tumor types and more computationally efficient
to run the model in low-resource environments. The proposed feature space reduction
method takes advantage of the back-propagation error to adjust the network weights and
optimize the new feature values, resulting in a dynamic feature reduction method that is
adaptive across diverse datasets and is able to make distinguishing between tumor types
easier and more computationally efficient, which enables the model to run in low-resource
environments. For the final classification process, the K-Nearest Neighbors (KNN) algo-
rithm is used.

Following previous works [8–15], the proposed hybrid approach helps to increase the
model’s adaptability to different data types, reduce overfitting, enhance the model general-
ization capabilities and thus maintain the model’s sustainability. The proposed approach
helps to address the major challenges of high-dimensional feature spaces and overfitting
issues. The proposed model helps radiologists in supporting decision making and mak-
ing accurate and timely diagnoses and paves the way for the development of advanced
AI-based tools in healthcare applications.
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2. Literature review. The study [16] presents a methodology for classifying brain tu-
mors in MRI images based on a pre-trained model, ResNet-101. The study relied on a
dataset that includes three different types of brain tumors (glioma, pituitary tumor, and
meningioma). The study used zero-centered density normalization and data augmenta-
tion techniques for improving the accuracy. The results achieved significant improvements
in accuracy, specificity, and sensitivity compared to other state-of-the-art methods.

The study [17] explored the ability of pre-trained deep convolutional neural models,
such as VGG-19, VGG-16, ResNet-50, and Inception V3, to classify MRI brain tumor
images. It used data augmentation and transfer learning to improve the performance of
the models.

The study [18] used 64 fully connected neurons with two convolutional layers to classify
brain tumor in MRI images. The study didn’t use all the available data in dataset, instead
of this, the researchers used 700 images for each class to balance the samples of each class.
The achieved classification accuracy was 84.1%.

The study [19] presented a classification model based on CNN consisting of four convo-
lutional layers in addition to a set of normalization layers, three max pooling layers, and
a final fully connected layer. 70% of the data was used for training and 30% for testing
using 10-fold cross-validation. The model achieved a classification accuracy of 81.0%.

The study [20] relied on segmenting brain tumor regions in MRI images using aug-
mented region growth approach using BraTS2015 dataset. The proposed approach in
this study is based on image processing using a thresholding approach where the image is
divided into eight blocks to estimate the intensity of each region. Then, a region growth
algorithm is applied to accurately identify the tumor region and then deep learning is used
to identify the tumor. The proposed model achieved a classification accuracy of 90%.

3. Methodology. The proposed methodology includes building and training a CNN
network to extract deep features from brain MRI images. Then, a Multilayers Perceptron
artificial neural network is used for the feature reduction process and then the KNN
algorithm is used for the classification process. These steps will be implemented using the
KERAS framework in the PYTHON programming language [21]. Figure 1 illustrates the
overall framework of the proposed methodology.

3.1. Data collection. The dataset used includes 5712 MRI images, each image has a size
512 x 512. All images are grayscale MRI scans that highlight different brain structures,
making them suitable for tumor detection tasks. The dataset includes two folders, the
first folder for training and the second folder for testing. Each folder contains four folders,
each of them represents one class which is (‘glioma‘, ‘meningioma‘, ‘no-tumor‘, ‘pituitary‘).
The dataset is obtained from Kaggle [22].

3.2. Data processing. This phase encompasses a series of image processing techniques
applied to the dataset’s images. Enhancing the image data and boosting the diversity
of the training dataset can be performed by using these operations and applying various
transformations to the images [23]. A pixel normalization process is also performed to
standardize the input data and facilitate efficient model training. The objective is to
enhance the model’s ability to generalize to new data [24, 25]. Below we explain the
preprocessing operations that are applied to the images:

• rescale=1./255: This parameter normalizes pixel values to a range of 0 to 1 by
dividing each value by 255, facilitating faster convergence of the neural network.

• rotation range=40: Randomly rotates the image by a specified angle, up to a
maximum of 40 degrees in this case.
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Figure 1. The overall framework of the proposed methodology

• width shift range=0.2 and height shift range=0.2: Randomly adjusts the width
and height of the image by a small fraction of their total dimensions, up to 20% in
this case.

• shear range=0.2: Applies a shear transformation with a maximum intensity of 20%.
• zoom range=0.2: Randomly zooms into the image by a factor of up to 20%.
• horizontal flip=True: Randomly performs horizontal flips on the images.
• fill mode=’nearest’: This parameter specifies the strategy for filling new pixels
introduced during rotation or transformation. Using ”nearest” assigns the value of
the closest pixel to fill the empty areas.

3.3. Models Implementations. First, the CNN model shown in Figure 2 will be built.
The model will be trained, performance metrics will be extracted, then the features of the
penultimate dense layer will be used and fed into the MLP model to reduce the features,
then KNN will be used to extract the performance metrics and compare them with the
basic CNN model.

As mentioned earlier, the feature reduction process is done using a Multilayers Percep-
tron type artificial neural network [26]. The proposed artificial neural network consists
of an input layer followed by a hidden layer containing 18 artificial neurons followed by a
second hidden layer consisting of 10 artificial neurons and then an output layer consisting
of 5 artificial neurons. The MLP network undergoes a new training process where each
batch is divided into training and test sets of equal size from each class. The reference
points for each class are calculated based on the arithmetic mean of each feature, and the
Euclidean distance is used to classify the test samples, followed by a back-propagation
error process to adjust the network weights. The goal of this network is to reduce the fea-
ture space from 128 (the number of features extracted using CNN) to 5 features. Figure 3
shows the proposed neural network structure. Figure 4 illustrates the training mechanism
of the proposed artificial neural network.
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Figure 2. The detailed structure of the CNN model

Figure 3. The proposed neural network structure

After optimizing the feature space, the KNN algorithm is used for final classifica-
tion [27]. KNN training involves splitting batches into training and test sets, while ex-
tracting performance metrics across all epochs. This hybrid approach aims to improve
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Figure 4. The training mechanism of the proposed artificial neural net-
work

classification accuracy by leveraging deep feature extraction, dimensionality reduction,
and efficient distance-based classification, contributing to more accurate and reliable brain
tumor detection. Figure 5 shows the detailed structure of the proposed methodology. Ta-
ble 1 shows the KNN parameters setting.

Table 1. The KNN parameters setting

Parameter Description Value
n neighbors Number of neighbors n neighbors = 3
weights Weight function used in prediction distance
algorithm Algorithm used to compute the nearest neighbors auto

p Power parameter for the Minkowski metric p = 2 (Euclidean distance)

3.4. Evaluation Matrices. A confusion matrix (CM) is a table used to evaluate the
performance of a model, especially in supervised learning [28, 29]. The structure of the
confusion matrix (CM) is presented in Figure 6.

Where TP (True Positive) occurs when the model accurately identifies a positive result,
TN (True Negative) happens when the model correctly identifies a negative result, FP
(False Positive) is associated with model mistakenly predicts a positive result and finally,
FN (False Negative) occurs when the model incorrectly predicts a negative result.

Performance measurements are assessed by using the following metrics:

Recall =
TP

TP + FN
(1)

where can be understood as quantifies of the ratio of true positives that the model accu-
rately identifies [30]:

Precision =
TP

TP + FP
(2)

which measures the ratio of correct positive predictions to the total number of positive
predictions made [31].

Accuracy =
TP + TN

TP + TN + FP + FN
(3)
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Figure 5. The detailed structure of the proposed methodology

which indicates the model’s overall performance by calculating the ratio of correct
predictions—both positive and negative—compared to the total number of predictions
made [32].

which presents a measurement that integrates precision and recall, offering a compre-
hensive assessment of a model’s overall effectiveness [33].

4. Results and discussion.
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Figure 6. Confusion matrix architecture

4.1. Motivation and contribution. A learning curve is a graphical representation that
displays the progression of a specific metric throughout the training phase of a model.
The x-axis represents progress, while the y-axis reflects error or performance.

The representation is useful to check the changes that occur in the performance of the
model during the learning phase, and enabling the detection of problems if they exist.
One of the most common curves is the loss function curve, which shows the changes in the
loss function (model errors) over time during the training phase. As the loss decreases,
the performance of the model improves. The other learning curve is the accuracy curve,
which measures the performance of the model during the training epochs, with increasing
values of this curve indicating an improvement in the capabilities of the model. Figure
8 shows the accuracy and loss curves for both the training and validation runs of the
custom CNNs shown in Figure 7.

Figure 7. The accuracy and loss curves for both the training and valida-
tion processes for custom CNN

As shown in Figure 7, the performance of the custom CNN increases over the training
epochs, with both the training and validation metrics trending upward. This indicates
that the network’s performance improves on both the training (visible) and validation
(unseen) data, suggesting successful convergence and better generalization, thereby miti-
gating the overfitting issue. In practice, the training process is deemed to have concluded
at epoch 14, where the highest accuracy of 90% was achieved for both the training and
validation data. We will now examine the results obtained from applying the custom
CNN network to the test data, which consists of new, unseen data. Figure 9 presents the
results of the confusion matrix generated by the CNN.

The main diagonal elements of the confusion matrix indicate the correct classifications
performed by the custom CNN. The confusion matrix results show that the model ac-
curately classified 237 samples from the glioma class, 247 samples from the meningioma
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Figure 8. The results of the confusion matrix achieved by the custom
CNN

class, 401 samples from the no-tumor class, and 295 samples from the pituitary class.
Elements that are outliers of the main diagonal within the confusion matrix indicate to
misclassifications. For instance, the element in the second row, first column (12) indicates
that 12 samples of class Table 2 shows the custom CNN results based on Precision, Recall,
and f1 Score for each class.

Table 2. The custom CNN results based on Precision, Recall, and f1 Score
for each class

Precision Recall F1 Score
Glioma 0.95 0.79 0.86
Meningioma 0.80 0.81 0.80
No-tumor 0.93 0.99 0.96
Pituitary 0.92 0.98 0.95

Precision: This metric measures the precision of the positive predictions made by the
model, in other words, how many correct predictions the model made for a given class
relative to the total number of predictions for that class. For example, the model achieved
a high precision of 0.95 for glioma, meaning that when it predicted an image as a glioma,
it was 95% correct.
Recall: This metric tells us the proportion of actual cases of a given tumor type that
were correctly identified by the model. For example, the model achieved a recall of 0.79
for glioma, meaning that it correctly identified 79% of all glioma cases in the test dataset.
F1-score: This measure is the harmonic mean of precision and recall and provides a
balanced measure of model performance. This measure can be used to determine the
overall performance of the model and based on the results shown in Table 2, it can
be said that the custom CNN performs well in classifying the No-tumor and Pituitary
classes, achieving high F1 Score values of 0.96 and 0.95, respectively. The CNN struggles
in classifying the Glioma and Meningioma classes, achieving F1 Scores of 0.86 and 0.80,
respectively.

Based on the results shown in Table 2, we can conclude the overall performance of the
custom CNN and calculate the overall accuracy of the system. Table 3 shows the overall
performance of the custom CNN.
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Table 3. The overall performance of the custom CNN

Precision Recall F1 Score Accuracy
0.90 0.8925 0.8925 0.90

4.2. Proposed Methodology Results. Figure 9 shows the confusion matrix results for
the proposed methodology.

Figure 9. The confusion matrix results for the proposed methodology

We notice from the confusion matrix results that the majority of the classifications
performed by the proposed model (main diagonal elements) are correct. The model failed
in some classifications, for example, the proposed model classified 19 samples as no tumor
while they are actually pituitary, and the model classified 11 samples as pituitary while
they are actually no tumor, so there may be a similarity in the features of these two
categories. The model succeeded in classifying all samples as meningioma. The model
also succeeded in classifying 286 samples as glioma out of 289 samples, where it made
mistakes in only two samples and classified one as no tumor and another as pituitary.
Table 4 shows the proposed model results based on Precision, Recall, and f1 Score for
each class.

Table 4. The proposed model results based on Precision, Recall, and
f1 Score for each class

Precision Recall F1 Score
Glioma 0.98 0.99 0.98
Meningioma 1.00 1.00 1.00
No-tumor 0.93 0.96 0.95
Pituitary 0.96 0.91 0.93

The results showed in Table 4 illustrate that the classification model effectively dif-
ferentiates between tumor types and ”no-tumor” cases, where the high precision across
all classes minimizes false alarms, while the robust recall ensures comprehensive tumor
detection. The balanced F1-scores demonstrate the model’s consistency and reliability in
accurately classifying MRI images into the respective categories.

For glioma, a precision of 0.98 indicates that of all the classifications that were classified
as glioma, 98% were correct, indicating very few false positives. A recall of 0.99 indicates
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that of all the actual glioma cases in the dataset, 99% were correctly classified, indicating
very few false negatives. The F1 Score of 0.98 reflects a strong balance between these
metrics and confirms that the model is highly accurate in detecting gliomas.

For meningioma, a precision of 1.00 indicates that all classifications that were classified
as meningioma were correct, indicating no false positives. A recall of 1.00 indicates that
all meningioma cases in the dataset were correctly classified, indicating no false negatives.
The F1 Score of 1.00 also indicates flawless performance in detecting meningiomas.

For the No Tumor category, a precision of 0.93 indicates that of all predictions that
were classified as “No Tumor”, 93% were correct, thus there were some false positives
(tumor cases that were incorrectly classified as no tumor). The recall of 0.96 indicates
that the model correctly classified 96% of the samples out of all the no-tumor samples
in the dataset, thus there were a small number of false negatives. The F1 Score of 0.95
indicates that the model performs well in classifying this category, but leaves room for
slight improvement in distinguishing “No-Tumor” cases.

For the Pituitary category, a precision of 0.96 indicates that of all predictions that were
classified as pituitary, 96% were correct, thus there were a small number of false positives.
The recall value of 0.91 indicates that the model identified 91% of the actual bulimia cases
in the dataset, indicating a slightly higher number of false negatives compared to the other
categories. The F1 Score value of 0.93 indicates a slight trade-off between precision and
recall. Table 5 shows the overall performance of the proposed model.

Table 5. The overall performance of the proposed model

Precision Recall F1 Score Accuracy
0.9675 0.965 0.9662 0.97

Comparing the overall performance of the proposed model shown in Table 5 with the
overall performance of the custom CNN shown in Table 3, we note that:

• Using the proposed model, the precision value increased by about 6.75%, thus the
proposed model significantly reduces false positives.

• Using the proposed model, the recall value increased by about 7.25%, thus the pro-
posed model has a great ability to identify true positives with high efficiency.

• Using the proposed model, the F1 Score value increased by about 7.37%.
• Using the proposed model, the overall accuracy increased by about 7%, thus the
proposed model has high reliability in correctly classifying MRI images of brain
tumors.

5. Conclusions and future works. Brain tumors are among the most sensitive tumors
that must be detected in their very early stages, otherwise they will lead to irreparable
problems in the body later. The main challenge in detecting brain tumors lies in the dif-
ferences in tumor location, shape and size. Also, the tumor in its early stages is too small
to be noticed by the human eye in MRI images, and thus doctors may misdiagnose the dis-
ease in its early stages. In this paper, we work to address the above-mentioned challenges
by developing a hybrid model for automated brain tumor detection based on machine
learning and deep learning techniques. In the proposed model, CNNs were used to ex-
tract fine features from MRI images, and then the extracted features were processed using
MLP network to reduce the feature space. The K-nearest Neighbors (KNN) algorithm
was then used for the final classification process. The proposed model achieved significant
improvements over the custom CNN across all performance metrics used, achieving an
accuracy of 97%, which is 7% higher than the CNN that achieved an accuracy of 90%, and
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a recall of 96.5%, which is 7.25% higher than the CNN that achieved a recall of 89.25%,
and a precision of 96.75, which is 6.75% higher than the CNN that achieved a precision of
90%. The results indicate that the combination of deep learning and traditional machine
learning techniques enhances the model’s ability to generalize and distinguish between dif-
ferent tumor types and non-tumor conditions. While the proposed model demonstrates
significant improvements over the custom CNN, a direct comparison with other state-
of-the-art models such as VGG-16, ResNet-50, and Inception V3 was not conducted in
this study. Future work could involve benchmarking the proposed methodology against
these deep learning architectures to further validate its effectiveness. Additionally, larger
and more diverse datasets can be used to ensure the robustness and generalization abil-
ity of the model. Other feature reduction or classification algorithms, such as ensemble
methods, can also be explored to further improve the model’s performance.
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