
Journal of Network Intelligence c⃝2020 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 5, Number 4, November 2020

Combining Dynamic and Static Analysis for
Automated Grading SQL Statements

Jinshui Wang1,2,3, Yunpeng Zhao1,2,3, Zhengyi Tang1,2,3,∗, Zhenchang Xing4

1School of Computer Science and Mathematics,
Fujian University of Technology, Fuzhou,350118, China

2Fujian Provincial Key Laboratory of Big Data Mining and Applications,
Fujian University of Technology, Fuzhou,350118, China

3Key Laboratory of Hunan Province for Mobile Business Intelligence,
Hunan University of Technology and Business, Changsha 410205, China

4Research School of Computer Science, Australian National University, ACT, 2601, Australia
∗Corresponding author: tangzy@fjut.edu.cn

Received August 2020; revised October 2020

Abstract. Learning and teaching Structured Query Language (SQL) is a challenge that
is widely recognized within the computer science education community. Programming ac-
tivities are considered to be the most important aspect of the learning process. Manually
grading of SQL statements, however, is often regarded as a tedious and time-consuming
ordeal. In this paper we propose an automated grading approach for SQL statements,
which combines dynamic and static analysis. The proposed approach first identified the
correct statements from the student SQL statements, and then grades the incorrect state-
ments based on the similarity between the statements and the correct statements. Empir-
ical evaluation of the proposal was carried out on a dataset consisting of 255 manually
graded pairs of statements. Experimental results show that our approach is superior to
three state-of-the-art grading approaches. Our study found that each grading approach
has its particular advantages and disadvantages, and the combination of different grading
approaches can help to improve the quality of grading results.
Keywords: Automated assessment, Automated grading, Structured Query Language

1. Introduction. As the dominant language in database language, SQL is regarded as
an important subject in the degree course of computer science and information technology.
While its syntax is relatively simple, it is still remarkably difficult to learn SQL [1, 2].
Courses of teaching SQL usually include assessments that give students a set of problems
and ask them to construct SQL statements as the solutions. Such assessments not only
measure students understanding and performance, but also help the educational systems
and learners to understand students level of knowledge and gaps [3, 4]. Grading SQL
statement is usually done by manually checking whether student SQL statement matches
the correct statement, or by checking whether the result of student SQL statement matches
that of the correct statement on one or more fixed datasets [5]. Checking and grading
SQL statements manually takes time and is vulnerable to error. Moreover, the problem
will become more and more serious as the number of students and evaluation increases.
This raises the need for an automated grading approach that can award marks to students
based on their submitted SQL statements.

A number of automated grading approaches have recently been proposed for evaluating
the work of students on SQL exercises. According to the evaluation strategy adopted,

179



180 J.S. Wang, Y.P. Zhao, Z.C. Xing, and Z.Y. Tang

there are two automated grading approaches: static analysis approach and dynamic anal-
ysis approach. By executing the student statement and the reference statement provided
by tutors on one or more fixed datasets, and then checking whether their results match,
the dynamic analysis approach can determine whether the student statement is correct.
The dynamic analysis approach is widely used in automated program grading systems and
online judge systems [6]. However, dynamic analysis approach often fails to accurately
assess how well the student has done based on the pre-set criteria, especially if the result
of the student statement does not match the expected result. On the one hand, some
student statements may be severely penalized for a small error, such as an extra column
in the select clause. On the other hand, some statements containing serious errors may
have good marks because the results are consistent with the expectations, such as both
the student statement and the reference statement provided by the instructor produce an
empty result. Whats more, this approach cannot work at all if the student statements
cannot be executed.
Unlike the dynamic analysis approach, the static analysis approach evaluates student

SQL statements without executing them. The static analysis approach evaluates the
structure of SQL statements, rather than their functions. The scores obtained through
dynamic analysis approach and static analysis approach can differ greatly for the same
SQL statement. A statement, for example, produces the expected result but its structure
does not meet the evaluators requirements set by the static analysis approach. Static
analysis approach has the ability to generate detailed and descriptive feedback when
analyzing SQL statements, to help students figure out their own errors. However, static
analysis approach also has several drawbacks. Since there are many correct solutions for
a SQL programming exercise, tutors have to provide as many solutions as possible so that
one of them can match the student statement. And as the complexity of SQL exercises
increases, the provision of all possible solutions becomes harder [7].
In this paper we proposed a hybrid automated grading approach for SQL statements.

This approach uses both static and dynamic analysis to grade SQL statements. Dynamic
analysis focuses on the identification of the correct statements submitted by students
based on a comparison of statement results. This will compensate for problems in static
analysis where it is difficult to provide adequate reference statements manually. Static
analysis, on the other hand, focuses on specific features of SQL statements that can be
used to generate fine-grained scores. We use dynamic analysis only to identify and grade
the correct answers from the statements submitted by students, rather than to grade
all SQL statements. After that, we compute partial marks for the remaining student
statements with respect to all correct statements and pick the best match, that is, the
one that assigns the highest marks. The rest of the paper is organized as follows: Section
2 presents related work on automated assessment methodologies and tools that have
been developed. Section 3 describes our hybrid approach for automated grading of SQL
statements. The results of this experimental study are presented in Section 4. In Section
5, we discuss and analyse these results. Finally, conclusions are presented in Section 6.

2. Related Work. To assist in the teaching and learning of SQL, many research and
educational systems were developed. Research related to our work may be roughly cate-
gorized into two areas, one is to help learn SQL, the other is to automatically score and
evaluate SQL. Relevant literatures from each of the two areas below are briefly reviewed.
The first type of related research focuses on helping students learn SQL, while the Intel-

ligent Tutoring System (ITS) provides a promising direction. The ITS is a computer-based
program that presents educational materials in a flexible and personalized manner sim-
ilar to one-to-one tutoring. The need for ITS in the field of SQL has been discussed



Automated Grading of SQL Statements 181

in detail [8]. They are not only conducive to the development of an effective learning
process [3], but also help to strengthen students knowledge building [9]. SQL-Tutor [10]
is an ITS designed as a guided discovery learning environment to help students learn
SQL programming. SQL-Tutor has a very simple architecture, which consists of user
interface, pedagogical module and student modeler. The pedagogical module is the core
of SQL-Tutor, which selects the problems to be given to students and generates corre-
sponding instructional actions according to the student model. Bhagat et al. [11] pro-
vides students with an intelligent problem-solving environment where they can attempt
to solve SQL problems presented by the system and obtain qualitative feedback on their
solutions. In [12], an integrated Exploratorium is developed for database course. The Ex-
ploratorium provides access to three advanced educational activities: annotated samples,
self-assessment questions, and SQL labs, each serviced by an independent web-based tool.

The other type of related research focuses on automated grading of SQL statements.
A variety of automated assessment systems have been developed over the years. Many
researchers have discussed these systems from different perspectives [6, 13, 14, 15]. Most
automated grading systems and online judge platforms (e.g. CodeChef 1, CodeForces 2

and Hackerrank 3) used dynamic analysis approach for grading. AsseSQL [16] is a typi-
cal example of a SQL assessment system. AsseSQL grades the student’s SQL statement
by comparing the results of the execution of the reference statement with the results of
executing the student statement. If the comparison results are the same, the student’s
statement is marked as correct, otherwise it is marked as incorrect. Similar to AsseSQL,
most automated grading systems (e.g. SQLator [1], Aplicación BD [17], SQL-ACME [18],
DB-Learn [19]) involve executing student’s SQL statement and reference statements on
a dataset and grading them based on whether the execution results are the same. These
systems gave much more immediate and informative feedback than that provided by
paper-based examination. However, they only produce a binary grade (correct or incor-
rect). Even if students statement has only a few errors, it will be judged as completely
incorrect because its execution result is different from that of the reference statement.

To improve students’ learning experience and the efficiency of evaluation, a comprehen-
sive teaching and evaluation tool for SQL writing skills called SQLify was proposed [20].
Instead of simply providing correct or incorrect results, SQLify introduced peer review
to address continuous grading issues, which produced a wider grading range. Kleiner et
al. [21] presented a tool called aSQLg, which adopted a multi-step marking algorithm
and taken several factors (i.e. syntactical correctness, efficiency of statement, correctness
of results and style) of students statement into consideration. Apart from these factors,
aSQLg also allowed an additional manual grading step by an instructor. Bhangdiya et
al. [22] presented the XDa-TA system for automated grading of SQL statements. Given
one or more correct statements for an SQL assignment, the tool automatically generated
datasets dedicated to capturing common errors. The grading was then done by comparing
the execution results of students statement with those of the correct statements against
these generated datasets. Kleerekoper and Schofield [2] presented an online assessment
tool called SQL Tester which was very similar to AsseSQL and assessed its impact on
student engagement and performance. The results from a student questionnaire showed
that 90% of the students wanted to spend more time using the tool to get good marks,
and 75% agreed that the tool motivated them to revise.

In the last years, several methodologies have been applied for grading SQL statements
in a continuous scale [0%, 100%]. Chandra et al. [23] extended the XData data generation

1https://www.codechef.com/
2https://www.codeforces.com/
3https://www.hackerrank.com/



182 J.S. Wang, Y.P. Zhao, Z.C. Xing, and Z.Y. Tang

techniques [22, 24, 25] to cope with more diversified SQL statements and a larger class of
mutations, and built a system for grading SQL using the datasets generated by XData.
They evaluated their grading tool and showed that it was better at catching student query
errors than fixed datasets or correction by teaching assistants. Stajduhar and Mausa [26]
proposed an automated method for grading individual SQL statements. The proposal
used several common and simple string similarity metrics for comparing the students
statement with the reference statements. These data were then used to construct the
predictive logistic regression model together with the manually assigned grades. The
model achieved the expected classification accuracy of 78% in binary classification, which
showed its potential in practical application. Chandra et al. [27] extended the XData
system by adding features that enable it to grade partially correct statements. They
first checked for correctness by using datasets generated by the XData system. If a
statement is marked as incorrect, then several techniques were used to award partial
marks. Chu et al. [28] introduced COSETTE, a prover that can determine whether two
SQL queries are semantically equivalent, and demonstrated an automated grading result
of a SQL homework problem using COSETTE. Although these systems are capable of
partial grading, they require tutors to provide statements that can deduce other correct
statements through different ways such as equivalence calculation or mutation operation.

3. Methodology. In this section, we first described how the student SQL statements
were partitioned. After that, the formula used to measure the similarity of SQL statements
was introduced. Finally, we present the hybrid approach used to grade SQL statements
automatically. Its corresponding flowchart is given in Fig. 1.

Figure 1. Flowchart of the hybrid approach for automated grading SQL statement.

3.1. Statement partition. There are usually many different correct statements for a
SQL exercise, and only one of them is provided as the reference statement by tutors.
Considering that there may be large differences between these different correct statements,
the student statements should not be graded solely based on their textual or syntactic
similarities with a single reference statement. It is, therefore, necessary to identify as
many different correct statements as possible, and then grade students SQL statements
based on the similarity between students’ SQL statements and each correct statement.
Besides, numerous automated grading approaches [5, 29, 30] have been proposed based
on the syntax structure of SQL statements. Compared to text-based approaches, these
approaches focused on the syntax structure are not influenced by variations in aliases and
the order of expression.
However, these methods would no longer be valid for those statements with syntax

errors, as the statements cannot be parsed. Therefore, it is necessary to classify SQL
statements according to whether they can be parsed or not, to pick specific grading
strategies for them.
For a given problem and a database instance, the execution results of all correct SQL

statements must be the same. For convenience, we denote the reference statement by
rs and the set of student’s statements by SS. According to the execution result of the
statement, the following exclusive rules were used to divide SS into three sets, namely
SS = CS ∪NS ∪ PCS, where:



Automated Grading of SQL Statements 183

• CS is the set of correct statements, it is defined as CS = {s | exec(s) = exec(rs)},
where the function exec(s) means the result of statement s on the given database
instance.

• NS is the set of non-executable statements, it is defined asNS = {s | exec(s) = Fail},
where Fail means the statement cannot be interpreted, i.e. DBMS reports an error.

• PCS is the set of partially correct statements, it is defined as
PCS = {s | exec(s) ̸= exec(rs) ∧ exec(s) ̸= Fail}.

3.2. Similarity calculation. For statements in PCS, their syntax information can be
represented by abstract syntax trees (ASTs). In computer science, AST is a tree rep-
resentation of the abstract syntax structure of source code written in a programming
language. Fig. 2 illustrates the AST of an example SQL statement Q1. Compared with
source code, the AST representation does not contain elements that are not important
for calculating similarities, such as comments, semicolons, and parentheses, but also can
reduce the potential adverse effects of aliases. Therefore, AST is widely used to analyze
the semantic structure of SQL statements.

ROOT

From WhereSelect

COMMA BinaryOpwriter.titleperson.first_name

=person writer.idwriter person.id

Figure 2. The abstract syntax tree of Q1.

Note that the AST is an ordered tree, but the order of nodes in some expressions or
clauses does not affect the function of the SQL statement. For Q1, the expression “FROM
Person p join Writer w on p.id = w.id” and the expression “FROM Writer w join Person
p on p.id = w.id” are functionally equivalent, but their corresponding ASTs are different.
Therefore, those order- independent nodes will be identified and then sorted alphabetically
before the similarity is calculated. In addition, SQL keywords are not case-sensitive, so
lower-case letters are equivalent to corresponding upper-case letters except within string
and character literals. Therefore, all letters except those within the string and character
literals are converted to corresponding lower-case letters. Finally, if there was no sorting
requirement for the execution results, the node of “order” in AST is not considered when
calculating the similarity.

There are three different algorithms for measuring tree similarity [34]: top-down maxi-
mum common subtree isomorphism, bottom-up maximum common subtree isomorphism,
and tree edit distance (TED). Compared with the first two algorithms, the similarity of
two ASTs can be calculated more accurately by using TED [35]. The TED between two
trees is determined as the minimum-cost sequence of node edit operations that transform
one tree into another. Various algorithms have been proposed and evaluated to calculate
TED [36, 37, 38]. In this paper, we apply a robust and memory-efficient algorithm namely



184 J.S. Wang, Y.P. Zhao, Z.C. Xing, and Z.Y. Tang

APTED [37] to computer the TED between ASTs. We use APTED(s1, s2) to denote the
edit distance between two ASTs s1 and s2. Let |T | denotes the total number of nodes
in AST T , the similarity of two ASTs s1 and s2 then is the APTED(s1, s2) normalized
using the method described in [39].

ASTSim(s1, s2) = 1− 2× APTED(s1, s2)

|s1|+ |s2|+ APTED(s1, s2)
(1)

Since ASTs cannot be built for SQL statements in NS, their textual features were used
to calculate similarity. In each SQL statement string, both in the student’s statement
and in the reference statement, all newline, tab, and semicolon characters were replaced
with whitespace. In addition, all leading and trailing whitespaces were removed, and
all adjacent intermediary whitespaces were combined into one single whitespace. The
Normalized Levenshtein distance metric was then used to calculate the similarity of two
statements. The Levenshtein distance LevDist(s1, s2) is the minimum number of single-
character edits (i.e. insertions, deletions, or substitutions) required to transform one
statement into the other. The similarity of s1, s2 is calculated by the following equation:

TxtSim(s1, s2) = 1− LevDist(s1, s2)

max(length(s1), length(s2))
(2)

3.3. Statement grading. By referring to the grading strategy of the dynamic analysis
approach, all statements in the CS are regarded as correct solutions. All statements in CS
can, therefore, be regarded as the grading criteria for SQL statements in NS and PCS.
Grading based on the similarity with multiple statements in CS, rather than a few given
reference statements, helps to broaden the set of grading criteria, thereby alleviating the
problem that the static analysis approach relies too much on the quality and quantity of
given reference statements. When there was more than one correct statement to an SQL
exercise, the correct statement which was the most similar to the student’s statement was
used as the criterion for calculating the grade.
Here, the pair of a statement and its grade is a tuple that can be labelled as gp = (s, g),

and the set of pair of gp is labelled asGP . The pseudocode of the hybrid grading algorithm
to grade statement is given in Algorithm 1.

4. Experimental Evaluation. Our experimental evaluation has two main objectives:
(1) to verify whether the proposed hybrid approach could be successfully used for auto-
mated grading of SQL statements, and (2) to identify particular strengths and weaknesses
of different grading approaches. To evaluate the proposed hybrid grading approach, we
compared the hybrid approach HA with the following different approaches.
Dynamic analysis (DA): executes the student statement and compares the results

with the expected one. If the result of a statement is the same as that of the reference
statement, then the statement is graded 100%, otherwise 0%.
Syntax-based analysis (SA): calculates the syntax similarity between the student

statement and the reference statement by equation 1, and then takes the similarity as the
grade of the student SQL statement. Set the grade to 0% for the statement that cannot
build an AST.
Text-based analysis (TA): calculates the textual similarity between the student

statement and the reference statement by equation 2, and then takes the similarity as the
grade of the student SQL statement.



Automated Grading of SQL Statements 185

Algorithm 1: The hybrid approach for automated grading SQL statement.

Input: The set of students’ statements: SS; reference statement: rs
Output: The set of pair of statement and its grade: GS

1 CS = {rs} ;
2 NS = ∅ ;
3 PCS = ∅ ;
4 foreach s ∈ SS do
5 if exec(s) = exec(rs) then CS = CS ∪ {s} ;
6 else if exec(s) = Fail then NS = NS ∪ {s} ;
7 else if exec(s) ̸= exec(rs) then PCS = PCS ∪ {s} ;
8 end
9 GS = ∅ ;

10 foreach s ∈ CS do
11 GS = GS ∪ {(s, 100%)} ;
12 end
13 foreach s ∈ NS do
14 g = max({TxtSim(s, s′) | s′ ∈ CS}) ;
15 GS = GS ∪ {(s, g)} ;
16 end
17 foreach s ∈ PCS do
18 g = max({ASTSim(s, s′) | s′ ∈ CS}) ;
19 GS = GS ∪ {(s, g)} ;
20 end
21 return GS ;

4.1. Data collection. Our experiment was conducted in an undergraduate Relational
Database course at the Australian National University. The experiment was conducted
on August 10th 2018 when students enrolled in the Relational Database course started to
learn relational data model and SQL. The experiment was carried out fully online for three
weeks and a total of 393 students were enrolled. The students were asked to login in an
online assessment platform and complete 15 exercises. This platform provided an SQLite
environment in students browsers by compiling the SQLite C code with Emscripten.
Students were allowed to submit and execute their answers in the form of SQL statements.
If the execution result of the statement submitted by the student is the same as that of
the reference statement, the online assessment platforms will return a feedback message
indicating that the execution result is correct. During the interaction with the assessment
platform, statements submitted by students were recorded and archived.

Overall, our experiment had collected 12,899 statements submitted by students. To
create a benchmark dataset that can be used to evaluate different grading approaches,
we randomly selected 45 SQL statements submitted by students for each exercise, and
asked three teaching assistants to grade them manually. Finally, we average the scores
provided by the three assistants and take it as the final score of each statement. The
dataset collected in this experiment is ready for public release 4.

4.2. Performance measures. To compare different grading approaches, an accuracy
metric is usually defined in terms of the forecasting error which is the difference between
the actual value (calculated by teacher assistances) and the predicted value (calculated by

4https://gitee.com/submitpaper/Automated-Grading-of-SQL-Statements



186 J.S. Wang, Y.P. Zhao, Z.C. Xing, and Z.Y. Tang

grading approaches). There are a number of metrics of accuracy in the related literatures
are:

• Mean Absolute Error (MAE) measures the average magnitude of errors in a
set of predictions without considering their direction. It is the average value of the
absolute difference between the predicted value and the actual observation value on
the test sample, in which all individual differences have equal weight.

MAE =

∑n
i=1 |At − Pi|

n
(3)

• Symmetric Mean Absolute Percentage Error (SMAPE) is an accuracy mea-
sure based on percentage errors. SMAPE is a modified Mean Absolute Percentage
Error (MAPE) in which the divisor is half of the sum of the actual and forecast
values.

SMAPE =
100%

n

n∑
t=1

|Ft − At|
(|At|+ |Ft|) /2

(4)

• Root Mean Square Error (RMSE) is a quadratic scoring rule, which can also
measure the average magnitude of the error. It is the square root of the average
value of squared differences between the predicted value and the actual value.

RMSE =

√∑n
i=1 (Ai − Pi)

2

n
(5)

where A and P stands for the actual and predicted value, respectively, and n stands for
the size of sample. Both MAE and RMSE range from 0 to ∞, and are indifferent to the
direction of errors. In addition, all three metrics are negatively oriented scores, that is,
lower values are better.

4.3. Results. Descriptive statistics of the benchmark as well as the grading summary of
different approaches are given in Table 1. In terms of the median and mean values, the
grades calculated by the HA are generally higher than those by other approaches, mainly
due to the following aspects. First of all, the DA scored 0% for SQL statements whose
execution results differ from the expected ones, while the HA would award partial marks
based on the similarity between those statements and correct statements. Second, both SA
and TA graded statements based on the similarity between the student’s SQL statement
and a given reference statement, while the HA first identified the correct statement that
is most similar to the student’s statement, and then graded it based on their similarities.

Table 1. Descriptive statistics of benchmark as well as grading summary
of different approaches.

Benchmark (%) HA (%) SA (%) TA (%) DA (%)
Mean 79.04 86.44 55.04 51.38 59.11
Median 96.67 100 51.28 45.28 100
Min 1.67 18.34 0 3.99 0
Max 100 100 100 100 100
Standard deviation 28.35 21.33 31.48 25.23 49.27

As shown in Table 1, the maximum values calculated by the four grading approaches
are the same. When the maximum value calculated by TA is 100%, it means that there
is at least one statement submitted by student identical to a reference statement. The
syntax structure and execution result of this statement and the reference statement must
be the same, resulting in a full score calculated by HA, SA, and DA. Different from the



Automated Grading of SQL Statements 187

maximum value, the minimum values calculated by the four approaches are different.
According to the grading strategy of the SA, there must be at least one SQL statement
that cannot construct an AST for it, which will cause its score to be 0%. Correspondingly,
the statement must also have syntax errors and cannot be parsed, resulting in DA also
scored it as 0%. As expected, the minimum value of the grading results by HA is much
higher than that of other approaches. First, according to the minimum value of the results
graded by TA (3.99%), for all the SQL statements submitted by the students, there will
be at least a certain degree of similarity in the text with the reference statement, that
is, there is no blank SQL statement. Second, for SQL statements that cannot be parsed,
HA calculates their scores based on the textual similarity between them and the reference
statements. Finally, regardless of whether students statements can be parsed or not, HA
takes the maximum similarity between students statements and all correct statements
as their scores, so the minimum value of Hybrid grading result is likely to be higher
than that of other approaches. Table 2 summarizes the performance of the four grading
approaches. The comparison results showed that HA has the smallest MAE, SMAPE, and
RMSE, indicating that HA has a clear advantage over other approaches. Furthermore, it
is interesting that none of the SA, TA, and DA is significantly better than the other two.

Table 2. Performance of different grading approaches.

Approach MAE SMAPE (%) RMSE
HA 8.37 17.81 14.67
SA 26.01 54.87 34.20
TA 29.89 50.25 37.15
DA 21.66 82.73 36.18

5. Discussion. The experimental results showed that the existing grading approach (i.e.
SA, TA, and DA) could not yield satisfactory results. On one hand, while the dynamic
analysis approach can effectively determine if the statements are correct by comparing the
execution results of SQL statements, it cannot award partial marks for those statements
that are partially correct or cannot be executed. Therefore, this led to a high stan-
dard deviation (49.27%) in the grading results of dynamic analysis. On the other hand,
all statements can be graded accordingly based on the similarity between the student’s
statements and the reference statements. However, whether the reference statements can
fully cover the features of the various correct statements will have a significant impact on
the accuracy of the grading results. If only one reference SQL statement is provided for
each exercise, the grading results of static analysis are likely to be unsatisfactory.

In contrast, the proposed hybrid approach first identifies various correct statements
submitted by students, and then grades other statements according to their similarities
with all the identified correct statements. Benefiting from the identified correct SQL
statements, the SQL statements submitted by students have the opportunity to compare
with the most similar statements rather than confining themselves to a few given reference
statements. Therefore, the hybrid approach has the ability to evaluate statements more
comprehensively and accurately, and its grading results are closest to the results of manual
grading (details in Table 2). It also means that there are some deficiencies in the current
practices [6, 37] of using online judge systems to grade programming assignments. The
online judge system computes an aggregated score for the program based on the results
of all considered test cases. When the SQL statement fails to pass the test cases due to
some minor errors, the online judge systems will award an unreasonable low score.



188 J.S. Wang, Y.P. Zhao, Z.C. Xing, and Z.Y. Tang

6. Conclusions. In this paper we proposed a hybrid approach for automated grading
of SQL statements, and compared it with three state-of-the-art approaches (i.e. dynamic
analysis approach, syntax-based analysis approach, and text-based analysis approach).
To the best of our knowledge, this is the first study that quantitatively compares different
automated grading approaches. Experimental results show that these three state-of-the-
art approaches have their shortcomings, which leads to a large difference between their
grading results and manually grading results. Due to the proposed hybrid approach
combines dynamic analysis and static analysis to take advantage of the complementary
features of each and overcome their shortcomings, the experimental results also show that
the hybrid approach is superior to other approaches.
As a grading approach, the proposed hybrid approach only awards marks for students

SQL statements, and does not provide detailed feedback on errors in statements. In the
future work, we will provide meaningful textual feedback according to the differences
between students statements and correct statements to help students improve their solu-
tions. This will meet the formative way of evaluation that consists of diagnosing students’
weaknesses and guiding them in the right direction [41]. Moreover, test data generation
and query equivalence will be added to the next version of the proposed hybrid approach
to further improve the accuracy of grading results.

Acknowledgment. This work was supported by Fujian Provincial Education Science
“Thirteenth Five-Year Plan” Project under Award FJJKCG19-001, Education and Re-
search Projects of Fujian University of Technology under Award JXKA18015 and Award
GY-Z15101, and the Open Fund of Key Laboratory of Hunan Province for Mobile Business
Intelligence of Hunan University of Technology and Business (2015TP1002).

REFERENCES

[1] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin, Sqlator: an online sql learning workbench, Acm Sigcse
Bulletin, vol.36, no.3, pp.223-227, 2004.

[2] A. Kleerekoper and A. Schofield, Sql tester: an online sql assessment tool and its impact, Proc. of
the the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Educa-
tion,Larnaca, Cyprus, pp.87-92, 2018.

[3] F. Grivokostopoulou, I. Perikos, and I. Hatzilygeroudis, An educational system for learning search
algorithms and automatically assessing student performance, International Journal of Artificial In-
telligence in Education, vol.27, no.1, pp.207-240, 2017.

[4] Z. Jeremic, J. Jovanovic, and D. Gasevic, Student modeling and assessment in intelligent tutoring
of software patterns, Expert Systems with Applications, vol.39, no.1, pp.210-222, 2012.

[5] B. Chandra, A. Banerjee, U. Hazra, M. Joseph, and S. Sudarshan, Automated grading of sql queries,
Proc. of the IEEE 35th International Conference on Data Engineering (ICDE), Macao, Macao,
pp.1630-1633, 2019.

[6] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal, A Survey on Online Judge Systems
and Their Applications, ACM Computing Surveys, vol.51, no.1, pp.1-34, 2018.

[7] M. Vujoevi-Janii, M. Nikoli, D. Toi, and V. Kuncak, Software verification and graph similarity for
automated evaluation of students assignments, Information & Software Technology, vol.55, no.6,
pp.1004-1016, 2013.

[8] A. Mitrovic, A knowledge-based teaching system for sql, Proc. of the ED-MEDIA/ED-TELECOM
98 Conference, Freiburg, Germany, pp.1027-1032, 1998.

[9] N. T. Heffernan and C. L. Heffernan, The assistments ecosystem: Building a platform that brings
scientists and teachers together for minimally invasive research on human learning and teaching,
International Journal of Artificial Intelligence in Education, vol.24, no.4, pp.470-497, 2014.

[10] A. Mitrovic, Learning sql with a computerized tutor, Proc. of the 29th SIGCSE technical symposium
on Computer science education, Atlanta Georgia, USA, pp.307-311, 1998.

[11] S. Bhagat, L. Bhagat, J. Kavalan, and M. Sasikumar, Acharya: An intelligent tutoring environment
for learning sql, Proc. of the Vidyakash 2002 International Conference on Online Learning, Mumbai,
India, pp.15-17, 2002.



Automated Grading of SQL Statements 189

[12] P. Brusilovsky, S. Sosnovsky, M. V. Yudelson, D. H. Lee, V. Zadorozhny, and X. Zhou, Learning
sql programming with interactive tools: From integration to personalization. ACM Transactions on
Computing Education (TOCE), vol.9, no.4, pp.1-15, 2010.

[13] R. Queirs and J. P. Leal, Programming exercises evaluation systems-an interoperability survey. Proc.
of the 4th International Conference on Computer Supported Education, vol.2, Porto, Portugal, pp.83-
90. 2012.

[14] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, Review of recent systems for automatic
assessment of programming assignments, Proc. of the 10th Koli calling international conference on
computing education research, Koli Finland, pp.86-93, 2010.

[15] K. M. Ala-Mutka, A survey of automated assessment approaches for programming assignments,
Computer science education, vol.15, no.2, pp.83-102, 2005.

[16] J. C. Prior and R. Lister, The backwash effect on sql skills grading, ACM SIGCSE Bulletin, vol.36,
no.3, pp.32-36, 2004.

[17] C. Domı́nguez, A. Jaime, J. Heras, and F. J. Garćıa-Izquierdo, The effects of adding non-compulsory
exercises to an online learning tool on student performance and code copying, ACM Transactions
on Computing Education (TOCE), vol.19, no.3, pp.1-22, 2019.

[18] J. Soler, F. Prados, I. Boada, and J. Poch, A web-based tool for teaching and learning sql, Proc. of
the 7th International Conference on Information Technology Based Higher Education and Training,
Ultimo, Australia, 2006.

[19] S. Nalintippayawong, K. Atchariyachanvanich, and T. Julavanich, Dblearn: Adaptive e-learning
for practical database coursean integrated architecture approach, Proc. of the 18th IEEE/ACIS
International Conference on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), Kanazawa, Japan, pp.109-114, 2017.

[20] S. Dekeyser, M. D. Raadt, and T. Y. Lee, Computer assisted assessment of sql query skills, Proc. of
the 18th conference on Australasian database, vol.63, Victoria, Australia, pp.53-62, 2007.

[21] C. Kleiner, C. Tebbe, and F. Heine, Automated grading and tutoring of sql statements to improve
student learning, Proc. of the 13th Koli Calling International Conference on Computing Education
Research, Joensuu, Finland, pp.161-168, 2013.

[22] A. Bhangdiya, B. Chandra, B. Kar, B. Radhakrishnan, K. M. Reddy, S. Shah, and S. Sudarshan, The
xda-ta sys- tem for automated grading of sql query assignments, Proc. of the IEEE 31st International
Conference on Data Engineering, Seoul, South Korea, pp.1468-1471, 2015.

[23] B. Chandra, B. Chawda, B. Kar, K. V. Reddy, S. Shah, and S. Sudarshan, Data generation for
testing and grading sql queries. The International Journal on Very Large Data Bases, vol.24, no.6,
pp.731-755, 2015.

[24] B. Chandra, B. Chawda, S. Shah, S. Sudarshan, and A. Shah, Extending xdata to kill sql query
mutants in the wild, Proc. of the 6th International Workshop on Testing Database Systems, New
York, USA, pp.1-6, 2013.

[25] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta, and D. Vira, Generating test data for
killing sql mutants: A constraint-based approach, Proc. of the IEEE 27th International Conference
on Data Engineering, Hannover, Germany, pp.1175-1186, 2011.

[26] I. Stajduhar, and G. Mausa, Using string similarity metrics for automated grading of sql state-
ments, Proc. of the 38th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, pp.1250-1255, 2015.

[27] B. Chandra, M. Joseph, B. Radhakrishnan, S. Acharya, and S. Sudarshan, Partial marking for
automated grading of sql queries, Very Large Data Bases, vol.9, no.13, pp.1541-1544, 2016.

[28] S. M. Chu, D. Li, C. L. Wang, A. Cheung, and D. Suciu, Demonstration of the cosette automated sql
prover, Proc. of the 2017 ACM International Conference on Management of Data, Chicago Illinois
USA, pp.1591-1594, 2017.

[29] P. Guagliardo and L. Libkin, A formal semantics of sql queries, its validation, and applications, Very
Large Data Bases, vol.11, no.1, pp.27-39, 2017.

[30] D. Insa and J. Silva, Automatic assessment of java code, Computer Languages, Systems & Structures,
vol.53, pp.59-72, 2018.

[31] H. Ma, T.-Y. Wu, M. Chen, R.-H. Yang, J.-S. Pan, A Parse Tree- Based NoSQL Injection Attacks
Detection Mechanism, Journal of Information Hiding and Multimedia Signal Processing, vol.8, no.4,
pp.916-9-28, 2017.

[32] T.-Y. Wu, C.-M. Chen, X. Sun, C.W. Lin, A countermeasure to SQL injection attack for cloud
environment, Wireless Personal Communications, Vol.96, no.4, pp.5279-5293, 2017.



190 J.S. Wang, Y.P. Zhao, Z.C. Xing, and Z.Y. Tang

[33] T.-Y. Wu, J.S. Pan, C.M. Chen, C.W. Lin, Towards SQL injection attacks detection mechanism
using parse tree, Proc. of the 8th International Conference on Genetic and Evolutionary Computing
(ICGEC 2014), Nanchang, China, pp.371-380, 2015.

[34] G. Valiente, Algorithms on Trees and Graphs, Springer Science & Business Media, 2013.
[35] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, Detecting similar java classes using tree algorithms,

Proc. of the 2006 International Workshop on Mining Software Repositories, Shanghai, China, pp.65-
71, 2006.

[36] M. Pawlik and N. Augsten, Rted: a robust algorithm for the tree edit distance, Very Large Data
Bases, vol.5, no.4, pp.334-345, 2011.

[37] M. Pawlik and N. Augsten, Tree edit distance: Robust and memory-efficient, Information Systems,
vol.56, pp.157-173, 2015.

[38] R. Sridharamurthy, T. B. Masood, A. Kamakshi-dasan, and V. Natarajan, Edit distance between
merge trees, IEEE Transactions on Visualization and Computer Graphics, vol.26, no.3, pp.1518-
1531, 2020.

[39] L. I. Yujian and C. G. Zhang, A metric normalization of tree edit distance, Frontiers of Computer
Science in China, vol.5, no.1, pp.119-125, 2011.

[40] W. J. Zhou, Y. G Pan, Y. H. Zhou, and G. Z. Sun, The framework of a new online judge system for
programming education, Proc. of the ACM Turing Celebration Conference-China, Shanghai China,
pp.9-14, 2018.

[41] S. M. Arifi, I. N. Abdellah, A. Zahi, and R. Benabbou, Automatic program assessment using static
and dynamic analysis, Proc. of the 3rd World Conference on Complex Systems (WCCS), Marrakech,
Morocco, pp.1-6, 2015.


