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Abstract. Currently, information security is becoming more and more important. El-
liptic Curve Cryptography (ECC) has attracted more attention due to its high security
performance and short key length, and has been more and more used in the process of
information encryption. This article provides the corresponding FPGA hardware design
scheme for the binary Edwards curve in ECC. At the same time, four schemes are ana-
lyzed and compared for the multiplier module in the finite field module. Finally, using the
relevant parameters of GF (2163) in the NIST standard, the behavior simulation exper-
iment of the Point Addition module of the binary Edwards curve is carried out to prove
the feasibility of the scheme.
Keywords: Elliptic Curve Cryptography; FPGA; NIST; binary Edwards curve.

1. Introduction. With the rapid development of Internet of Things (IoT) technology,
the scale of the industry continues to expand. More and more IoT smart devices are
put into actual production and life, which brings convenience, but also creates some
safety problems [1]. Therefore, how to encrypt and protect all kinds of personal sensitive
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information and ensure the integrity and secrecy of the information when it is transmitted
and stored on the network is particularly important.

Elliptic Curve Cryptography (ECC), as a research category of cryptography, has a rich
research history [2–7]. Compared with the RSA cryptosystem, under the same security
conditions, ECC has the advantages of higher encryption and decryption efficiency, faster
calculation speed, and less storage space and bandwidth [8]. It is suitable for use in
environments with limited computing resources and high-speed communications [9–13].
And with the continuous development of Internet of Things technology, the security of
Internet of Things devices has always been a problem that needs to be solved. Therefore,
the application of ECC on IoT devices has become an effective method to solve this
problem [14]. In recent years, there have been more achievements in the research and
implementation of elliptic curve encryption algorithms [15–18].

The realization of ECC algorithm is divided into software realization and hardware
realization [16]. With the continuous development of Internet of Things technology, the
realization method of ECC algorithm gradually turns to the realization of hardware sys-
tem. The hardware realization is divided into two kinds of realization schemes of Field
Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuit (ASIC).
ASIC has disadvantages such as poor flexibility, poor scalability, and high development
cost when it is implemented. Once the chip is determined, it is extremely difficult to mod-
ify the hardware structure, which is not convenient for secondary development. Compared
with it, FPGA has higher programmability, less development cost and shorter develop-
ment cycle. While obtaining higher performance, it has the advantages of convenient up-
grade and maintenance. Therefore, it is a better choice to use FPGA to implement ECC
algorithm [19,20]. However, the complex mathematical operations of the ECC algorithm
itself and the diversity of applications also pose challenges to FPGA implementation [21].
Therefore, while giving the relevant realization principle of the elliptic curve, this article
also gives the corresponding hardware design scheme, and carries on the corresponding
simulation test to verify the feasibility of the scheme.

The remaining chapters of this article are arranged as follows: Section 2 introduces
the overall scheme of Edwards elliptic curve encryption algorithm. Section 3 introduces
several specific algorithms implemented in this article. Section 4 shows the simulation
test results of the design scheme. Section 5 concludes this article.

2. The overall scheme of Edwards elliptic curve encryption algorithm. The
hardware implementation of the elliptic curve encryption algorithm not only requires the
selection of curves and curve parameters, but also the selection and design of algorithms
at different levels. The first is the selection and parameter setting of the elliptic curve
algorithm. Elliptic curves have many different algebraic equation forms, such as Weier-
strass type, Jacobi type, Edwards type, Huff type and Hessian type, etc. Different forms
of elliptic curves have different advantages in different applications. At the same time,
due to different forms, the specific implementation of the algorithm is also different [14].

Compared with the classic Weierstrass type, the Edwards type has more advantages
from the perspective of computational efficiency and security. Therefore, this paper selects
the Edwards curve for hardware implementation of related algorithms in an attempt to
further improve the efficiency and security in the practical application of elliptic curves.

There are two types of Edwards curves. Because this paper is based on the binary finite
field GF (2m) for implementation, this paper chooses the binary Edwards curve [22,23].

The binary field GF (2m) refers to the m-th extended field of the field GF (2)={0,1}, m
is a prime number, in this article m = 163, based on the binary Edwards curve
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EB,d1,d2 : d1(x, y) + d2(x
2, y2) = xy + xy(x + y) + x2y2 (1)

In Eq.1, d1 and d2 belong to finite field k and d1 is not equal to 0, and d21 + d1 + d2 6= 0.
Based on the actual application requirements of the elliptic curve encryption algorithm,

the base point p, the order of the base point, and the private key k need to be determined
and stored in advance. For the binary Edwards curve, d1 and d2 need to be determined.

Then is the realization of elliptic curve encryption algorithm, which mainly includes two
parts: finite field operation and elliptic curve operation [24]. The two parts respectively
contain several small components. The finite field operations include four parts: modular
addition, modular multiplication, modular squaring and modular inverse. Elliptic curve
operations include point doubling and point multiplication. Different parts use FPGA
to implement sub-modules. This article realizes the realization of finite field operations
on GF (2m). Finite field operations have two expressions: polynomial basis and normal
basis. Since polynomial basis is more suitable for hardware implementation, this paper
implements related finite field algorithms based on polynomial basis.

The finite field modular addition operation on GF (2m) is equivalent to XOR, so the ex-
ecution efficiency is very high and there is no need to design a separate module. Modular
squaring usually has a fixed design method, which will not be introduced in this article.
Since the modular inverse operation can be implemented based on modular squaring and
modular multiplication, the modular inverse module is no longer designed separately, but
implemented by calling modular multiplication and modular squaring modules. As the
core module in elliptic curve finite field arithmetic, the realization of modular multipli-
cation will consume a lot of resources [25]. A reasonable and effective algorithm can
reduce resource consumption and improve computational efficiency [26, 27]. The most
basic binary finite field algorithms include bit serial multipliers, bit parallel multipliers
and hybrid multipliers [28–30]. The space complexity of the bit-serial multiplier is small,
but it takes a lot of time [31], and the bit-parallel multiplier consumes less time, but the
space complexity is quite high [32]. The digital serial multiplier can achieve a compromise
between time complexity and space complexity [33]. In recent years, 2-way Karatsuba-
Ofman algorithm (2-way KA) and 3-way Karatsuba-Ofman algorithm (3-way KA) are
often used to reduce the space complexity of modular multiplication. In addition, there
are algorithms such as (a,2)-way KA [34], (a,b)-way KA [35]. This article attempts to
implement the 2-way KA and conduct an overall simulation test.

Compared with other elliptic curve forms, the binary Edwards curve is more efficient.
Its addition formula is symmetrical and unified. The point addition and doubling formula
are the same, and there is no need to design two different modules. After completing
the implementation of the finite field operation module, you can choose to use affine co-
ordinates or projective coordinates based on the calculation efficiency of the finite field
operation module. The use of projective coordinates can avoid the use of modular in-
verse operations, and the use of affine coordinates requires inversion operations, but it
will reduce the number of modular multiplication operations. In the specific hardware
implementation, you can choose according to the overall effect.

Since the point multiplication operation of the binary Edwards curve requires a lot of
point operations, it is also possible to improve the calculation efficiency by separately
designing algorithms for different forms of point operations, such as the direct calculation
of multiple points. Related algorithms can make full use of the intermediate value in
the calculation process to improve the calculation efficiency of different forms of point
operations, such as conjugate plus point operations. Next, we will specifically introduce
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the related algorithms of modular multiplication in the finite field operation of hardware
implementation and the point operation of the binary Edwards curve.

3. The specific principles of several operations. This section mainly introduces the
specific principles of several modular multiplication algorithms and binary Edwards curve
operations described in the second section.

The first is the basic principle of the bit-serial multiplier. The bit-serial multiplier is
based on the principle of binary finite field multiplication. The basic principle of binary
finite field multiplication is shift addition. The specific formula is as follows

c(z) = a(z) · b(z) = am−1z
m−1b(z) + · · ·+ a2z

2b(z) + a1zb(z) + a0b(z) (2)

Since m = 163 in this article, in the process of multiplication, the multiplication of two
polynomials with the highest power of 163 requires modular reduction. According to the
NIST standard, the reduced polynomial f(z) = z163 + z7 + z6 + z3 + 1 selected in this
article [24]. Then the formula of the bit-serial multiplier is

c(z) = (· · · ((am−1b(z)z+am−2b(z))z+am−3b(z))z+ · · ·+a1b(z))z+a0b(z) mod f(z) (3)

The second is the bit parallel multiplier, the specific calculation formula is

c(z) = a(z) ∗ b(z) mod (f(z))

= a0 b0 + (a0 b1 + a1 b0) z
1 + · · ·+ am−1bm−1x

2m−2 mod (f(z))

= a0 b0 ⊕ (a0 b1 + a1 b0) z
1 ⊕ · · · ⊕ am−1bm−1z

2m−2 mod (f(z))

= C0 ⊕ C1z
1 ⊕ · · · ⊕ C2m−2z

2m−2 mod (f(z))

(4)

Based on the above formula, C0, C1, ..., C2m−2 can be calculated separately in parallel,
and the calculation can be completed in one clock cycle, but the space complexity is
high and requires a lot of resources. Compared with the bit-parallel multiplier and the
bit-serial multiplier, the 2-way KA algorithm is a compromise, and the space complexity
and time complexity are more balanced.

Since a(z) represents the polynomial with the highest power of 162, the 2-way KA
algorithm divides the entire polynomial into two parts, using A0 to represent the first
half of a(z) and A1 to represent the second half, then a(z) = A0 + zm/2A1, similarly,
b(z) = B0 + zm/2B1. Then the multiplication of a(z) and b(z) is as follows

c(z) = a(z)b(z) =
(
A0 + z

n
2A1

) (
B0 + z

n
2B1

)
= C0 + C1z

n
2 + C2z

n
(5)

For Eq.5, P0 = A0B0,P1 = (A0 + A1) (B0 + B1), P2 = A1B1.Then, C0 = P0, C1 =
P0 + P1 + P2, C2 = P2. Based on the above principles, this article uses FPGA to quickly
implement the algorithm. It should be noted that when using the 2-way KA algorithm,
it is necessary to ensure that m is an even number. This article has made some simple
modifications in the implementation process.

Next is an introduction to the binary Edwards curve addition formula. Assume that
two points P (x1, y1) and Q(x2, y2) are added together. In order to calculate the added
point (x3, y3). The additive formula of the binary Edwards curve additive group is defined
as
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(x3, y3) = (x1, y1) + (x2, y2)

x3 =
d1 (x1 + x2) + d2 (x1 + y1) (x2 + y2) + (x1 + x2

1) (x2 (y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1) (x2 + y2)

y3 =
d1 (y1 + y2) + d2 (x1 + y1) (x2 + y2) + (y1 + y21) (y2 (x1 + x2 + 1) + x1x2)

d1 + (y1 + y21) (x2 + y2)

(6)

For Eq.6, d1, d2 ∈ EB,d1,d2 . Eq.6 is uniform. When P = Q, this formula can also be
used for calculation.

The binary Edwards curve addition formula can be based on the affine coordinate sys-
tem or the projective coordinate system. This article uses the point addition and doubling
point formula in the projective coordinate system to avoid the inversion calculation. Let
P = (X1, Y1, Z1), Q = (X2, Y2, Z2), then (X3, Y3, Z3) after adding two points can be
obtained by the following formula

W1 = X1 + Y1;W2 = X2 + Y2;A = X1 · (X1 + Z1) ;B = Y1 · (Y1 + Z1)
C = Z1 · Z2;D = W2 · Z2;E = d1C

2;H = (d1Z2 + d2W2) ·W1 · C
I = d1C · Z1;U = E + A ·D;V = E + B ·D;S = U · V
X3 = S · Y1 + (H + X2 · (I + A · (Y2 + Z2))) · V · Z1

Y3 = S ·X1 + (H + Y2 · (I + B · (X2 + Z2))) · U · Z1;Z3 = S · Z1

(7)

Based on the introduction of the above specific principles, this article will implement
the above specific principles in FPGA, and evaluate and analyze the overall plan.

4. Experimental results. This section is based on FPGA to realize the finite field oper-
ation of the binary Edwards curve and some point operation algorithms. The simulation
test software used in this article is Vivado 2017, and it is implemented using Verilog. The
selected development board is the ZYNQ 7000 series of Xilinx. And the maximum values
of LUT, FF and BUFG are 53200, 106400 and 32.

In this paper, the selected m value is 163. According to the NIST standard, the
corresponding domain polynomial is f(z) = z163 +z7 +z6 +z3 +1. Table 1 and Figure 1-6
record the resource occupancy and simulation waveforms of the finite field. The number
of bits processed in each cycle of the bit Serial Parallel hybrid Multiplier (multi sp) is set
to 4.

Table 1. Resource occupancy of finite field operations

LUT FF BUFG
Estimation Utilization % Estimation Utilization % Estimation Utilization %

multi s 267 0.5 666 0.63 1 3.13
multi p 12748 23.96 0 0 0 0
multi sp 513 0.96 665 0.63 1 3.13

multi 2way 677 1.27 995 0.94 1 3.13
sqr 84 0.16 0 0 0 0

inverse 2782 5.23 826 0.78 1 3.13

The following results can be obtained from the resource consumption and simulation
time of the four multipliers. The bit Serial Multiplier (multi s) takes the least resources,
but the simulation time is too long. Although the simulation time of bit full Parallel
Multiplier (multi p) is the shortest, it needs the most resources, so it is not suitable for
running on resource limited devices. The bit Serial-Parallel hybrid Multiplier (multi sp)
provides a good compromise. On the basis of the serial multiplier, the operation speed
is improved by processing multiple bits of data in parallel in each cycle. The 2-way KA
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Figure 1. Simulation waveform of bit Serial Multiplier (multi s)

Figure 2. Simulation waveform of bit full Parallel Multiplier (multi p)

Multiplier (multi 2way) is also a compromise solution, which is faster than the bit Serial-
Parallel hybrid Multiplier in terms of operating speed. However, due to the process of
dividing data, a certain amount of resource consumption is increased. The preprocessing
of the data in the Square operation part is achieved by using the generate statement
in Verilog. And according to the law of data modulo operation, fully parallel modulo
operation is realized. Therefore, the square operation of data can be realized in one clock
cycle. The inverse operation is the operation that takes up the most resources in the
entire finite field operation part. In this article, the extended Euclidean algorithm is used
to achieve the inverse operation.

The next step is to implement the Point Addition algorithm of the binary Edwards
curve based on the completed finite field calculation module. Parameters d0, d1 and Z
are set to 1 respectively. The resource occupation results are shown in Table 2, and the
simulation test result of Point Addition operation is shown in Figure 7.

5. Conclusions. Aiming at the binary Edwards curve in Elliptic Curve Cryptography
(ECC), this paper presents the FPGA hardware design scheme of the Point Addition
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Figure 3. Simulation waveform of bit Serial Parallel Hybrid Multiplier
(multi sp)

Figure 4. Simulation waveform of 2-way KA Multiplier (multi 2way)

Figure 5. Simulation waveform of Square operation (sqr)

Table 2. Resource occupancy of Point Addition

LUT FF BUFG
Estimation Utilization % Estimation Utilization % Estimation Utilization %

Point add 4711 8.86 5453 5.13 1 3.13



114 J.S. Pan, P.C. Song, Q.Y. Yang and L.C. Liao

Figure 6. Simulation waveform of Inverse operation (inverse)

Figure 7. Simulation waveform of Point Addition

part. Four kinds of multipliers, square operation and inverse operation in finite field are
designed by behavior simulation, and the multipliers are analyzed and compared. Finally,
based on the realization of the finite field part, the GF (2163) related parameters in the
NIST standard are used to realize the FPGA realization and verification of the binary
Edwards Point Addition module. In the future, on the basis of this work, we will continue
to complete the design and optimization of the binary Edwards Point Multiplication and
Point Doubling modules to achieve a complete binary Edwards curve calculation.
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