
Journal of Network Intelligence ©2021 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 6, Number 2, May 2021

High-resolution Satellite Multi-class Cloud Detection
Based on Improved AlexNet

Wenli Lv

College of Electrics Engineering
Heilongjiang University

Harbin, 150080, PR China
Guangzhou Branch

China Telecom Co.,LTd..
Guangzhou, 510000, PR China

512636201@qq.com

Wenjing Lv

College of Electrics Engineering
Heilongjiang University

Harbin, 150080, PR China
jlee1020@163.com

Jianxiong Li

College of Electrics Engineering
Heilongjiang University

Harbin, 150080, PR China
2628466879@qq.com

Xiaofei Wang*

College of Electrics Engineering
Heilongjiang University

Harbin, 150080, PR China
*Corresponding author:nk wxf@hlju.edu.cn

Received January 2021; revised March 2021

189



190 W. Lv, W. Lv, J. Li, X. Wang

Abstract. Today, relevant statistics show that the surface of the earth is always covered
by clouds 50% of the time. Under different sensors and different application scenarios,
the solution of cloud occlusion and interference to remote sensing images is extremely
complicated. Need to choose different solutions according to the actual situation. There-
fore, performing cloud inspections is critical to us. However, due to the small number of
bands and narrow spectral range of high-resolution remote sensing images in China, the
accuracy of traditional cloud detection is low. In this study, we will use the PlanetScope
and Sentinel-2 images collected in the tropical region of Australia as datasets to perform
four classifications on our efficient and streamlined AlexNet network proposed in this
paper. In model training, these two images were divided into 9936 128×128 images, and
four labels were made manually. The training works well, with an overall accuracy of 99.
The accuracy of label 0 is 91.22, the accuracy of label 1 is 98.79, the accuracy of label
2 is 74.79, and the accuracy of label 3 is 76.28. Since the total number of samples used
for label 2 and 3 is small, accuracy is less than 80. We compare it with some previous
studies, and the accuracy and overall accuracy of each class of the algorithm have been
improved. At the same time, compared with other single models of CNN and multiple
combined models in experiments, the accuracy evaluation index F score and OA have
improved. In addition, the algorithm is compared with the most popular clouds and cloud
shadows. The shielding algorithms (Sen2Cor and MACCS algorithms) are compared.
The improved AlexNet model in this paper is beneficial to the research of high-resolution
multi-class cloud detection.
Keywords: Deep learning, Remote sensing, Sentinel-2, PlanetScope

1. Introduction. At present, with the significant improvement of the spatial resolution
of various sensors in the aerospace field, the application value of remote sensing images
in resources and environment, disaster monitoring, urban planning, and other areas has
become increasingly more significant. For example, through cloud detection technology
and Internet of Things technology to achieve typhoon monitoring in order to achieve the
purpose of early warning. [1]. The satellite transmission frequency and sensor update
speed are rapidly increasing. The brightness and resolution of the remote sensing images
obtained are different. The applicability of traditional feature design and fixed empiri-
cal parameters are getting worse and worse. Cloud detection and compensation issues
have not been a perfect solution. To assure that earth observation-based geo-information
products have the highest available spatial and temporal resolutions and information
content, it is critical to simultaneously harvest data from a large variety of satellite sen-
sors. While Synthetic Aperture Radar (SAR) sensors have the capability of penetrating
through clouds and acquiring images during day and night. A host of tasks require the
use of a high-resolution multispectral image to overcome limitations of SAR data and to
improve the temporal resolution and timespan [2]. Also, urban [3]. and flood [4]. mapping
and monitoring systems widely use high-resolution multispectral images due to their ex-
tended thematic information content and more straightforward reflection characteristics in
complex environments. For example, spatiotemporal fusion technology is used to fuse dif-
ferent sensors to obtain high-resolution multispectral images. [5] The inherent potentials
of multi-spectral satellite images are, however, being hampered by the presence of clouds
and cloud shadows that may obstruct objects of interest and can bias image statistics,
which can negatively impact on the performance of image analysis methods. Therefore,
the usefulness of this imagery depends strongly on the ability to reliably mask clouds and
cloud shadows from clear-sky pixels. Being able to quickly and accurately identify cloud
and cloud shadow pixels is fundamental for unbiased down-stream analysis [6].

The emerging machine learning algorithms provide an effective technical way to solve
cloud detection. By mixing the input of training data, the model can be applied to
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different sensors, and it can achieve better detection under different imaging lighting con-
ditions and imaging ratio results [7]. The research on cloud detection has been going
on for decades, and the evolution of algorithms has also changed from early physical
spectral characteristics to artificially designed texture feature structures to current ma-
chine learning algorithms. Convolutional neural networks, as one of the most extensive
algorithms for machine learning, are also continually developing. The first successful ap-
plications were developed by Yann LeCun in the 1990s. The most famous of these is the
LeNet architecture for identifying postal codes, numbers, and more [8]. It was followed by
AlexNet, which was popular in computer vision, and was developed by Alex Krizhevsky,
Ilya Sutskever, and Geoff Hinton. AlexNet was applied to the ImageNet ILSVRC chal-
lenge in 2012, and it clearly surpassed the runner-up (top 5 error rate was 16%, and the
Biya army was 26%) [9]. This convolutional neural network has a very similar architecture
to LeNet, but it is more profound, more significant, and has convolutional layers stacked
on top of each other (usually a convolutional layer always immediately follows the pool-
ing layer). Later there was GoogLeNet, a convolutional network developed by ILSVRC
2014 winner Szegedy and others. Its main contribution is the development of an Incep-
tion module, which significantly reduces the number of parameters in the network (4M
compared to AlexNet with 60M). In addition, this paper uses Average Pooling instead of
Fully Connected layers on top of the convolutional neural network, thereby eliminating
a large number of seemingly unimportant parameters. The 2014 ILSVRC runner-up is
a convolutional neural network from Karen Simonyan and Andrew Zisserman, known as
VGGNet [10]. Its main contribution is to demonstrate that the depth of the network is a
critical component of excellent performance. Their final best network contains 16 CONV
/ FC layers, and it is desirable that this convolutional neural network has a very uniform
architecture, which only performs 3× 3 convolution and 2× 2 pooling from the beginning
to the end. Their pre-trained model can be used directly in Caffe. The disadvantage la-
bele of VGGNet is that it costs more to evaluate and uses more memory and parameters
(140M). Most of these parameters are located in the first fully connected layer, because it
was found that these FC layers can be removed without degrading performance, thereby
significantly reducing the number of indispensable parameters.

Finally, the residual network (ResNet) was developed by Kaiming He et al. It is the
winner of ILSVRC 2015. It has special skip connections and a large number of uses for
batch normalization [11]. The architecture also does not have a fully connected layer
at the end of the network. ResNet is by far the most advanced convolutional neural
network model and the default choice for using convolutional neural networks in practice
(as of May 10, 2016). In particular, you can see more recent developments, adjusting the
original architecture of Kaiming He et al. Identity Mappings in Deep Residual Networks
(posted March 2016). Significant work has also been undertaken to detect and segment
clouds and cloud shadows in multi-spectral satellite images [12]. The existing methods can
broadly be categorized into rule-based and machine learning approaches. The majority
of rule-based methods exploit variations of reflectance in visible, shortwave-infrared and
thermal bands and develop rule-sets that combine thresholds [13] or functions over several
spectral bands [14] to distinguish clouds from clear-sky pixels. Cloud shadows are more
difficult to detect than clouds because their spectral signatures overlap with other dark
surface materials [15]. In particular, water surfaces are known to introduce false positives
into shadow segmentation.

In recent years, machine learning methods have been proposed to extract more robust
high-level information from images [16]. Li [17] used a Support Vector Machine to seg-
ment clouds from reflectance and texture information. Hollstein [18] presented an overview
of several ready-to-use machine learning algorithms to detect ”cloud”, ”cloud shadow”,
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”snow/ice”, ”water”, ”flooded” and ”clear sky” pixels in Sentinel-2 images. The algo-
rithms they presented include Classical Bayes, Decision Trees, Support Vector Machine
and Hayes [19]introduced the Spatial Procedures for Automated Removal of Cloud and
Shadow (SPARCS) algorithm that used neural networks and rule-based post-processing to
determine ”cloud,” ”cloud shadow,” ”water,” ”snow/ice” and ”clear sky pixels” in Land-
sat images. Convolutional Neural Networks (CNNs), which extract features directly from
raw images by combining convolutional and pooling layers, gradually appear in recent
studies on cloud segmentation [20]. First results manifest superior accuracy, generaliza-
tion ability, and inference speed compared to rule-based and classical machine learning
approaches. Zhaoxiang [21] used a lightweight U-Net [22] architecture and combined it
with wavelet image compression for computationally efficient cloud detection on-board
small satellites.

Ozkan [23] adapted a deep pyramid network to produce cloud masks from noisy labeled
RGB colour images. Zhan [24]specifically focused on distinguishing cloud and snow from
Gaofen1 imagery using a modified VGG network [25]. Despite the promising results for
cloud detection achieved in above mentioned deep learning studies, none of them specif-
ically considers cloud shadows. Isikdogan [26] uses a Fully Convolutional Network for
semantic segmentation of Landsat ETM+ images into five classes that include, amongst
others, ”cloud” and ”shadow.” Their main objective is large-scale surface water map-
ping, but generalization ability across sensors is not considered. Sholar [27]confirms the
observed lack of research and available deep learning models that specifically consider a
shadow class and concludes that future work should focus on improving in this regard.
Furthermore, additional research is needed to train models that generalize well across
different sensors and images with varying atmospheric conditions and surface reflectance
characteristics.

In this research, we propose a multi-classification method based on clouds and cloud
shadows, which is based on the improved AlexNet. Our goal is to provide a fast and easy-
to-use method that can cover up from two Clouds and cloud-shadow pixels in a single
date image of a high-resolution satellite sensor without retraining or human intervention.
We demonstrate the generalization ability of our method on multiple satellite sensors
(Palntscope and Sentinel-2).

As a comparison, we investigated the performance of the ensemble CNN model trained
and validated on the combination of T-S2 and T-PS datasets, comparing it with the most
popular cloud and cloud shadow mask algorithms (Sen2Cor and MACCS algorithms) on
the Sentinel-2 image dataset [28], it turns out that our method performs better than its
classification performance. In this case, we also manifest the impact of different trained
CNN models on the performance of cloud multi-classification. Compared with previous
work in this direction, our research has more computational efficiency of the model for
simple label classification and considers the data set combination of the two sensors. In
addition, we consider shadow categories and distinguish between cloudy and partially
shadowed pixels.

2. Methods.

2.1. Datasets. Our satellite data consists of two datasets consisting of PlanetScope and
Sentinel-2 satellite images. All PlanetScope images contain three data bands: red, green,
blue (RGB), and ground sampling distance (GSD) of 3.125m [29]. We also trimmed the
Sentinel-2 image to include only RGB bands and resampled it to a 3.125m resolution to
match the PlanetScope image. In this study, we refer to the data of the PlanetScope and
Sentinel-2 images as the data sets T-PS and T-S2, respectively.
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The image sizes of the T-PS and T-S2 datasets are 128 × 128 pixels (ie 400
In this study, we used Yuri’s dataset, but we changed multiple labels to a single label,

that is, each image corresponds to a label, and all images were set to 4 categories. In
addition to manually modifying the labels, we emphasize keeping the two categories of
cloud and cloud shadow, and then subdividing into three types of labels. The remaining
land cover categories were classified into one category.

Each data set was further divided into training and test sets. In the experiment, the
entire data set was scrambled, and 10% is randomly selected as the test set used and 90%
is used as the training set.

2.2. Cloud and shadow CNN architectures. Convolutional neural network is a form
of machine learning. It describes linear and non-linear functions by computing nodes.
The input layer, convolution layer and pooling layer can be used as a complete FC layer.
Each additional layer results in increased computation. The image is generally input to
the network as a vector, and then the parameters are determined for training.

However, traditional CNNs will expand more connected neurons due to hidden layers
during training, and the network will have difficulty converging. As shown in Figure 1, it
is an improved general CNN pixel-level classification architecture [30] that extracts pixel
information from three-channel images.

Figure 1. Improved on a generic CNN pixel-wide classification architecture

The architecture is a 5× 5 convolutional layer, a 3× 3 pooling layer, and the last three
fully connected layers. Finally, we get our four classifications, which are based on pixel-
level classification. This architecture is suitable for multi-channel images. The dimensions
of each convolution layer include width, height, and depth.During convolution, the next
layer connects a small area on the previous layer, so that the weight and redundancy are
reduced.

The AlexNet network structure model proposed by Alex in 2012, sparked a wave of
application of neural networks and won the 2012 image recognition competition, making
CNN the core algorithm model in image classification. For traditional machine learn-
ing classification algorithms, you can see that the official data model accuracy rate has
achieved an excellent result. The benefits of using AlexNet are:

1)Using Relu, Relu is an activation function in neural networks, which is superior to
tan and sigmoid functions. when sigmoid and other features are used to calculate the
activation function (exponential operation), the amount of calculation is large; when
backpropagation is used to calculate the error gradient, the derivation involves division,
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and the amount of computation is relatively large; when Relu activation function is used,
the amount of calculation in the whole process is much saved; for deep networks, when the
sigmoid function is back-propagated, it is easy for the gradient to disappear. ReLu will
make a slice of neurons output 0, which will cause the network to be sparse and reduce
the interdependence of the parameters, which will alleviate the problem of overfitting.

2)The overlapping pooling improves accuracy and is not easy to overfit. In previous
CNNs, the average pooling layer was hardly used. AlexNet all used the largest pooling
layer to avoid the blurring effect of the average pooling layer. The length is longer than
the size of the pooled kernel so that there is overlap between the outputs of the pooling
layer, which improves the feature richness.

3)Local response normalization improves accuracy. It creates a competition mechanism
for local neurons, making the response small in response to larger values and suppressing
smaller feedback.

4)Data gain Dropout, reduce overfitting, and use data enhancement methods to allevi-
ate overfitting.

Based on the above advantages, I began to use the AlexNet model as my own classi-
fication framework, but because the data in this study is too small, each picture is only
128 × 128, which is too large for network training, and the extracted features that are
easy to appear at the end are almost 0. Therefore, inspired by MNIST, the number of
training layers is reduced. Through continuous debugging during training, it is found
that the accuracy is quite high when it is reduced to two layers. At the same time, it
also retains the LRN processing in AlexNet, creating a competition mechanism for the
activity of local neurons, making the larger response values relatively more significant,
and suppressing other neurons with smaller feedback, which enhances the generalization
ability of the model. The optimization section selects AdamOptimizer as the optimizer.

The data set used in this paper has 9936 pictures, which are randomly shuffled into
8936 training sets and 1000 test sets. Its data set size is 128*128 pixels. The system
used in this study is Win10, the hardware is anaconda 3, the platform is pycharm, and
the library used is tensorflow1.4. The network is trained using a CPU. In this study, the
training data was passed in before training. The new module tf.data framework module
of tensorflow1.4 was used to perform pre-processing data operations. The tf.data module
has corresponding data enhancement operations, such as rotation and noise, and contrast
enhancement. The middle also uses tf.image.resize to resize the data to 32 × 32 × 3.
Convolution kernel size used during the training is 5*5, the number of iterations to 50
times, using Adam optimizer, bitchsize set to 128. The Relu activation function is used
after each layer of convolution. The kernel span of each convolution layer is fixed at 1.
Pooling is generally divided into maximum pooling and average pooling. This multi-class
cloud detection convolutional neural network AlexNet framework uses the biggest pooling.
Compared to classic AlexNet, we have made the following improvements:

1) Resampling is used. Change the pixel size of the original image 128×128 to 32×32.
2) Reduce the number of convolutional layers. The 5-layer convolutional layer was

changed to 2 layers, achieving a total accuracy of 99.
3) Change the number of fully connected nodes. Change the number of fully connected

connection points from 4096 and 1000 to 384 and 192.
4) Change the output category. Change the 1000 categories into 4 categories.
The hyperparameters of each layer of AlexNet are shown in Figure 2 below. The central

idea of this network is to resize the input size of 128 × 128 × 3 to 32 × 32 × 3, using two
convolution layers, and the picture size is not suitable for classic. The first layer of AlexNet
uses a larger kernel size of 11 × 11, but uses a kernel size of 5 × 5, with a step size of
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1, which scans all pixels in the full image and has 64 convolution kernels; immediately
followed by a layer of LRN; Then the maximum pooling layer with a step size of 2.

Figure 2. AlexNet network parameters of this study

2.3. Training process in Deep learning. The above network will now be described.
This network uses two convolutional layers and three fully connected layers. The process
of convolution pooling and full connection of each layer is as follows: The input data of
the first layer is the original 32 × 32 × 3 image. This image is convolved by the5 × 5 ×
3convolution kernel. The convolution kernel generates a new pixel for each convolution of
the original image. The convolution kernel moves along the x-axis direction, and the y-
axis direction of the original image and the step size of the movement is 1 pixel. Therefore,
the convolution kernel generates 28 pixels in the process of moving, and the 28*28 pixels
in the rows and columns form the pixel layer after convolving the original image. There
are 64 convolution kernels, which will generate 28 × 28 × 64 convolutional pixel layers.
These pixel layers are processed by the pool operation (pooling operation). The scale of
the pooling operation is 3 × 3, and the step size of the procedure is 2.
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Then the size of the pooled image is 13. That is, the scale of the pixel after the pooling
is 13 × 13 × 64; then, after the normalization process, the range of the normalization
operation is 5 × 5; when the image formed after the first convolution layer operation is
back-propagated, each The convolution kernel corresponds to a bias value. That is, the 64
convolution kernels of the first layer correspond to the input layer of the upper layer, and
the input data of the second layer is the 13× 13× 64 pixel layer output by the first layer.
To facilitate subsequent processing, the left and right sides and the upper and lower sides
of each pixel layer must be the scale of filling the one-pixel element layer is 13 × 13 × 64.
Corresponding to 64 convolution kernels.

The size of the input data of the third layer is 4 × 4 × 64, and a filter of size 4 × 4 ×
64 is used to perform convolution operation on the input data of the third layer; The
convolution operation of the input data of the layer generates an operation result, which
is output by a neuron; there are 384 4×4×64 size filters for convolution operation on the
input data, and the operation result is output by 384 neurons; The 384 operation results
generate 384 values through the Relu activation function, and 384 output result values of
this layer are output after the drop operation. Because the size of the filter (4 × 4 × 64 )
used in the calculation of the third layer is the same as the size of the feature map to be
processed (4 × 4 × 64 ), that is, each coefficient in the filter is only equal to the feature
One-pixel value in the map is multiplied; while in other convolution layers, the coefficients
of each filter are multiplied by the pixel values in multiple feature maps; therefore, the
third layer is called a fully connected layer.

The 4× 4× 64 scale pixel layer data output by the second layer is fully connected with
the 384 neurons in the third layer, and then processed by the Relu function to generate
384 data, and then processed by the dropout function to output 384 data.

The 384 data output from the third layer is fully connected to the 384 neurons of the
fourth layer and then processed by Relu to generate 384 data, and then output 384 data
after dropout processing.

The 384 data output from the fourth layer is fully connected to the 192 neurons in
the last layer, and the trained values are output after training. Next, the layer number
parameters of the network are explained as follows: The first layer weights are initialized to
generate 64 convolution kernels of 3 channels (RGB pictures) with a size of 5*5, without
L2 regularity (wl = 0.0), and then Input the original image for convolution operation,
the step size is [1, 1, 1, 1], that is, each pixel is calculated, and the zero-padded mode
is ’SAME’ (blocks that are not enough for the convolution kernel size are supplemented
with 0). Then define the bias parameters for the first layer. Since there are 64 convolution
kernels, the bias size is 64. The convolution result is biased and activated using the Relu
activation function. In order to improve the training speed, it can train faster, and at the
same time, solve the problem of gradient disappearance or gradient dispersion in sigmoid
in deeper training networks.

After the convolution, the first layer of the pooling operation is performed. The pooling
layer with a size of 3×3 and a step size of 2×2 is used to operate. The result is processed by
LRN so that the value becomes larger or become smaller, mimicking the lateral inhibition
mechanism of the nervous system. Similarly, the second convolutional layer has the same
architecture as the first fully connected layer. Next is a three-layer fully-connected layer.
The output of the previous layer is flattened to obtain the flattened length of the data. A
fully-connected layer with 384 hidden nodes and a fully-connected layer with 192 hidden
nodes are established. Finally, an output layer is created (because the data has a total of
4 categories of labels, the number of output nodes here is 4).

3. Experimental results.
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3.1. Data preprocessing. Satellite data uses two data sets, namely PlanetScope and
Sentinel-2 satellite images. In this study, we used the data from Tropics PlanetScope
and Sentinel-2 as the data sets T-PS and T-S2, respectively. The remote sensing image
was segmented to generate 128 × 128 pixels, and random scene samples were extracted
from its image, which finally obtained 4943 PS image scenes and 4993 S2 image scenes
(400×400m ). This data set was manually divided into 12 labels, which were divided into
three groups. The first group was the cloud label, the second group was the shadow label,
and the third group was the land cover label. In order to be suitable for the study in this
paper, it was manually remade labels. There are 9936 data sets used in this study. They
were labeled as cloudy unshaded as label 1 (S2:1519 types, PS: 807 types), and partly
cloudy unshaded is labeled as label 2 (S2: 771, PS: 840), partly cloudy partly shaded is
labeled as label 3 (S2: 557, PS: 257), and all other scene images that do not contain these
three types are labeled as label 0.

Figure 3. Four labels of images of PlanetScope dataset

The manual label image is shown in Figure 3(a) and (b). There are too many data
scenarios representing label 0, of which only a portion of label 0 is shown. Data sets T-PS
and T-S2 were manually labeled for this study. They are divided into four categories.
Images containing cloudy unshaded are labeled as label 1 (S2: 1519, PS: 807), and those
marked as partially cloudy unshaded are labeled 2 (S2: 771, PS: 840), and part cloudy
partly shaded is marked as 3 (S2: 557, PS: 257). All other combined labels are labeled
as label 0. There are 2326 pieces of image data for label 1, 1611 pieces of image data for
label 2, 814 pieces of image data for label 3, and 5185 pieces of data for label 0. It can
be understood that, since images other than the above three types of labels are all set to
label 0, consequently, the data of label 0 is much larger than the data of other labels. It
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should be noted that the definition of cloudy is greater than 90% of cloud pixels, and the
definition of a slice of clouds is 10-90% of cloud pixels. Similarly, the definition of a slice
of shadows is 10-90% of shadow pixels, and the definition of no shadow is less than 10%
of pixels.

Figure 4. Four labels of images of Sentinel-2 dataset

In addition, the data set provided by Yuri is four-channel and 12 kinds of labels. In
this paper, the third-party library gdal in Python is used to convert the remote sens-
ing image into a three-channel RGB image, which is convenient for subsequent experi-
ments. The images and the labels we have manually modified have been uploaded to the
link(https://pan.baidu.com/s/1U s2SEPGqskysi9eYfGqgQ). and researchers who need it
can download it by themselves. Thank you Yuri for sharing his dataset, the link is as
follows(https://github.com/yurithefury/ChipClassification).

3.2. Classification results and index evaluation. Commonly used classification mod-
els have the following detection accuracy: F-score, ROC curve, kappa coefficient.

Take the binary classification as an example, 1 represents a positive category, 0 repre-
sents a negative category, and the instances are divided into positive (native) or negative
(negative). But in practice, there are four situations:

1) If a case is positive and predicted to be positive, it is a true post (TP)
2) If an instance is a positive class but is predicted to be a negative class, it is a false

negative class (False Negative FN)
3) If a case is a negative class but is predicted to become a positive class, it is a false

positive class (False Postive FP)
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4) If a case is a negative class but is predicted to become a negative class, it is a true
negative class (True Negative TN)

The calculation formulas for the horizontal and vertical axes can be obtained from the
above table, as shown in Table 1.

Table 1. Confusion matrix of two classification

class 1(Predicted) 0(Predicted)
1(Labeled) TP FN
0(Labeled) FN TP

(1) True Positive Rate (TPR): TP / (TP + FN), which represents the ratio of actual
positive instances to all actual positive cases in the positive class predicted by the classifier.

(2) False Positive Rate (FPR): TP / (TP + FP), which represents the ratio of actual
positive instances to all predicted positive instances in the positive class predicted by the
classifier. For multi-classification problems, accuracy is no longer the only evaluation indi-
cator, as well as accuracy and recall. F-score is a comprehensive indicator that reconciles
these two parameters:

F1 =
2PR

P + R
(1)

According to the prediction results of the learner, the samples are sorted, and the
positive samples are predicted one by one in this order. Each point on the ROC curve
reflects the sensitivity to the same signal stimulus.

The horizontal axis generally represents the specificity of the negative-positive rate
(FPR), which divides the proportion of all negative examples in the negative cases; (1-
Specificity), the larger the FPR, the more negative classes are predicted in the positive
class.

The vertical axis represents a true positive rate (TPR) sensitivity. Sensitivity (positive
class coverage), and the larger the TPR, the more actual positive classes are predicted in
the positive class. The ideal target is TPR = 1 and FPR = 0, that is, the (0,1) point.
The closer the ROC curve is to the (0,1) point, the better off the 45-degree diagonal.
Figure 4 is a four-category ROC curve. It can be seen intuitively that the TPR of each
category follows the FPR curve. From the figure, it can be seen that the ratio of label 0
is 0.95, the ratio of label 1 is 0.95, and the ratio of label 2 is 0.86, and the ratio of label
3 is 0.88. The classification of labels 0 and 1 is better, and the ranking of labels 2 and 3
is next. Kappa coefficient is a method used to evaluate consistency in statistics. We can
use it to evaluate the accuracy of multi-class models. The value range of this coefficient
is [-1,1]. In practical applications, it is [0,1] is similar to the principle that a convex curve
generally does not appear in the ROC curve. The higher the value of this coefficient is,
the higher the classification accuracy achieved by the model is. The calculation method
of the kappa coefficient can be expressed as follows:

k =
p0 − pe
1 − pe

(2)

Where Po is expressed as the total classification accuracy; Pe is expressed as:

pe =
a1 × b1 + a2 × b2 + ... + ac × bc

n× n
(3)
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Figure 5. ROC curve of four categories

Where ai represents the number of true samples of the i category, and bi represents the
number of samples predicted by the i category.

Figure 6 and Figure 7 are the curves of the loss rate and accuracy rate of the training
set and test set with the number of iterations during training. The training iterations are
performed 50 times for about 25 minutes, and the speed of more than ten frames in 1s is
predicted. It can be seen from the figure that the accuracy rate and loss rate of the test
and training sets gradually approach 1 and 0 with the number of iterations. In our model
detection, the final classification accuracy reached 0.99.

The four-class confusion matrix is shown in Table 2(we use pre instead of predicted):

Table 2. Confusion matrix of four-class

class 0(Pre) 1(Pre) 2(Pre) 3(Pre) total
0(Labeled) 4730 244 199 12 5185
1(Labeled) 12 2298 15 1 2326
2(Labeled) 43 353 1205 10 1611
3(Labeled) 19 104 70 621 814
total 4804 2999 1489 644

According to the data in Table II above, it can be obtained that the Kappa coefficient
is 0.83, the F-score is 0.86, the recall rate is 0.85, and the accuracy rate is 0.88. The above
accuracy evaluation indicators are the average values calculated after each category.

Because the accurate evaluation of the algorithm compared with this study uses overall
accuracy (OA) and, where OA is the general evaluation test set based on the accuracy of
CNN classification using the following equations:
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Figure 6. Accuracy of training and testing sets

Figure 7. Loss of training and testing sets
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OA =
TP + TN

TP + TN + FP + FN
(4)

F2 is the weighted average of recall and accuracy using the following equations:

F2 =
5 × TP

5 × TP + 4 × TN + FP
(5)

As a comparison with Yuri’s experiment [31], we investigated the performance of the im-
proved CNN model trained and validated on the combination of T-S2 and T-PS datasets.
The comparison of labels F2 and OA generated using individual models, and their en-
semble could be seen in Table 3. The ensemble of three individual CNN models generally
resulted in the improvement of labels F2 and OA, suggesting that the ensemble approach
is effective in selecting the best performing model. However, the magnitude of the im-
provement in terms of F2 and OA between ensemble and individual models was marginal.
In this case, compared with our improved AlexNet model, its total accuracy evaluation
index F2 (OA) reaches 0.85 and 0.94, which are improved by 0.03 and 0.14, respectively.

Table 3. Total accuracy evaluation various models F2(OA)

methods train data test data F2 OA
Improved AlexNet S2-train+PS-train S2-test+PS-test 0.85 0.94
DenseNet201 S2-train+PS-train S2-test+PS-test 0.81 0.74
ResNet50 S2-train+PS-train S2-test+PS-test 0.8 0.74
VGG10 S2-train+PS-train S2-test+PS-test 0.81 0.73
Ensemble S2-train+PS-train S2-test+PS-test 0.82 0.8

It can be seen from the above figures that compared with other CNN models, the
accuracy of this algorithm is much higher than the results of other model training. At the
same time, compared with the most popular cloud and cloud shadow mask algorithms
(i.e. Sen2Cor and MACCS), both algorithms are based on pixel-level classification. Since
we manually combined the cloud and shadow labels and only combined two types of cloud
labels and two types of shadow labels, we will not compare it with label 0 here, and the
remaining labels will be selected from the average accuracy results of other algorithms.
Therefore, the accuracy of the three algorithms can be compared with our algorithm, as
shown in Table 4. Looking at the accuracy results of each label, the accuracy of our
algorithm has improved a lot.

Table 4. Evaluation F2(OA) of each label in four methods

mproved
AlexNet

Sen2Cor MACCS CNN ensemble

Label1 0.93(0.92) 0.88(0.85) 0.83(0.80) 0.83(0.86)
Label2 0.76(0.93) 0.77(0.81) 0.57(0.76) 0.80(0.79)
Label3 0.80(0.98) 0.38(0.81) 0.54(0.76) 0.54(0.76)

As can be seen in Table 4. Our improved CNN model was able to detect scenes con-
taining cloud,and shadow cover four types in both PlanetScope and Sentinel-2 imagery
quite accurately (Label one F2 (OA) of 0.94 (0.92), Label two F2(OA) of 0.76(0.93), Label
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three F2(OA) of 0.80(0.98). As the classification was performed at the scene-level (i.e.
128× 128m pixels, 400× 400m), there is a substantial loss of information in image scenes
labeled as, for example, ’partly cloudy’ or ’partly shaded’ if these masks were to be used
for masking cloudy and shaded areas in high-resolution satellite imagery. However, this is
also true for classifications generated using the MACCS algorithm, as it uses a dilatation
procedure to enlarge the classification regions by 480m, which is larger than the size of our
scenes (i.e. 400 × 400m). It is also important to note that while the Sen2Cor algorithm
performs classification at the pixel level, it misses a lot of cloud shadows with per-label
F2 for partly shaded labels of 0.17.

4. Conclusions. The algorithm in this paper can accurately detect scenes with clouds
and shadows in PlanetScope and Sentinel-2 images, and at the same time, the accuracy
of image detection for cloudy and shadowless views can reach 92. The detection accuracy
of scenes that are partially cloudy without shadows and partly cloudy and partially shad-
owed is less than 80. The reason is that the number of training samples is not enough.
Accordingly, the data set of these two labels can be further expanded to increase its
detection accuracy.

In order to highlight the cloud and shadow labels, we manually divide them into four
categories. In the next step, we can expand the labels on the underlying surface to trans-
form the four-classification problem into a multi-classification problem, while continuing
to improve our algorithm model. The detection accuracy is further enhanced. We can
also consider multi-label classification to create more value for the dataset.

The significant contributions of this work are summarized as follows:
1) For multi-scene classification of high-resolution multi-spectral satellite images such

as Sentinel-2, the improved AlexNet convolutional neural network algorithm is used, and
the total accuracy can reach 99.

2) Compared with Yuri’s research, the new method developed for classification of
Sentinel-2 images is based on the set-based extended multi-label algorithm, which manu-
ally divides 12 categories into four categories, which significantly saves the difficulty of the
experimental algorithm. The issue of cloud detection was highlighted. At the same time,
compared with its four classification accuracy results, the four classification accuracy of
this study is higher than its accuracy.
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