
Journal of Network Intelligence ©2021 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 6, Number 2, May 2021

A Generalized Framework for FSM Implementation

Mao-Hsiung Hung*

Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology
School of Computer Science and Mathematics, Fujian University of Technology

no. 33, Xuefunan Road, University Town, Minhou, Fuzhou, 350118, China
*Corresponding author: mhhun0502@qq.com

Chaur-Heh Hsieh

College of Artificial Intelligence, Yango University, Fuzhou, 350015, China
chaoho1204@qq.com

Jinshui Wang

Research School of Computer Science, Australian National University, ACT, 2601, Australia
ymkscom@gmail.com

Received January 2021; revised April 2021

Abstract. Finite State Machine (FSM) is a useful and powerful tool to model a dy-
namic system. A traditional implementation of FSM using nested switch-case statement
exists problems of poor reusability and maintainability for programming. This paper
presents a generalized framework of algorithmic implementation to improve these dis-
advantages of nested switch-case statement. A lookup table and an event handle func-
tion are used to construct various FSMs in the proposed framework. In the experi-
ments, we apply the proposed framework to implement unconditional/conditional FSMs
and hierarchical/concurrent-hierarchical FSMs. The experimental results demonstrate
the framework’s good generalization.
Keywords: Finite State Machines, FSM Implementation, Generalized Framework

1. Introduction. Finite State Machine (FSM) provides a useful and powerful tool to
model a dynamic system. Particularly, FSMs can effectively and efficiently describe com-
plex logics of systems, so that engineers and programmers apply FSM to avoid heuristic
design for complex systems, for examples of network protocols [1]-[3] and control systems
[4]. Therefore, FSMs have receiving a largely wide applications and developments in many
engineering and scientific domains.

A traditional and simple programming implementation uses nested switch-case state-
ment to construct FSMs [5]. However, the implementation framework of nested switch-
case statement has poor reusability and its codes are required to maintain because of
the simple structure. [6]-[9] applied an object-oriented programming to encapsulate the
nested switch-case statement and enhance FSM’s code structure, so that the reusability
and maintainability of FSM implementation framework is obtained improvement. How-
ever, the core part of the nested switch-case statement is still needed rewriting to adapt
various FSMs in the object-oriented framework. Several works developed drawing and
visualization tools to plot and describe state transition diagrams of FSMs such as Finite
State Machine Editor [10] and then these tools can automatically generate FSM codes.
However, when the modification of the state diagrams are demanded, these FSM codes
are still again generated and deployed to the implementation framework.

289

290 M.H. Hung, C.H. Hsieh, J. Wang

In this work, we developed an implementation framework for FSMs, featured by high
generalization. A lookup table is applied to represent state transitions of a FSM in our
proposed framework. Cooperating with the lookup table, we propose event handle algo-
rithms to perform state transition, output action and condition examination of FSMs.
The proposed implementation framework achieves that the configuration of the lookup
table is only required to construct various FSMs without changing the core codes. More-
over, our proposed framework can be extended to apply hierarchical FSMs. In the ex-
periments, we implemented unconditional/conditional FSMs and hierarchical/concurrent-
hierarchical FSMs to demonstrate that the core part can keep unchanged between these
FSMs’ implementations.

The remainder of this paper is organized as follows. Section 2 reviews a FSM imple-
mented by nested switch-case statements. Section 3 describes the proposed algorithm.
Section 4 demonstrates and discusses experimental results of the proposed methods. The
conclusions are drawn in Section 5.

Algorithm I: Event handle of FSM by nested switch-case statement
1 Input: an event of e
2 function EventHandle(e)
3 switch(curStateFsm)
4 case S1: switch(e)
5 case I1: ... ns←Sx
6 case I2: ... ns←Sx

7
...

8 case In: ... ns←Sx
9 end switch
10 case S2: switch(e)
11 case I1: ... ns←Sx
12 case I2: ... ns←Sx

13
...

14 case In: ... ns←Sx
15 end switch

16
...

17 case Sn: switch(e)
18 case I1: ... ns←Sx
19 case I2: ... ns←Sx

20
...

21 case In: ... ns←Sx
22 end switch
23 end switch
24 curStateFsm← ns

2. Related Work. Nested switch-case statement is one of the most common methods
to implement FSM. Algorithm I lists pseudo codes of event handle of nested switch-case
statement, where EventHandle(e) function processes a transition caused by an event of e.
The current state of a FSM is pre-stored in a variable of curStateFsm before the function
call. The statement of switch(curStateFsm) in Line 3 selects one of S1, S2,. . . , and Sn
branches according to curStateFsm’s value. Then, following S1, S2,. . . , or Sn cases, the
selected switch(e) statement chooses one of branches of I1, I2,. . . , and In according to the
event. Then, the statement of ns ←Sx performs to assign the next state of Sx. Finally,
the statement of curStateFsm← ns completes Sx assignment to curStateFsm.

A Generalized Framework for FSM Implementation 291

Using the nested switch-case structure, we can construct a various of FSMs. However,
because the case values of the switch statements have to be programmed into constants,
the most disadvantage of the nested switch-case structure is that its program codes are
required to modify for every FSM’s changes. As a result, the programming codes of the
nested switch-case structure become very poor in reusability and generalization. There-
fore, how to parameterize the case values of the switch statements is the key issue to
design a universal program for FSMs.

3. Proposed Method.

3.1. FSM without and with condition. To represent a state transition diagram of
a FSM, we apply a lookup table to store the configuration of all state transitions of the
FSM. Each row of the lookup table is used to represent a state transition. We designed
a data structure in a row, which contains five fields to record a transition. The five fields
are denoted by fromState, event, toState, act and comp. The fromState field records the
starting state of a transition. The event field records a specific event to drive the state
transition. The toState field records the ending state of the transition. The act field
stores a runner of an action which is performed once the state transition happens. The
comp filed stores a comparator to judge whether a specific condition required by the state
transition. The conditional state transition is also regarded an extended FSM, EFSM [11].

Figure 1. (a) Single transition without condition (b) Single transition with condition

The first four fields are enough to deal with a state transition without condition. If
a state transition executes with a condition, then it needs the five fields to represent.
Fig.1(a) shows a single state transition from a state of X to a state of Y driven by a event
of I to perform a action of O with no condition. Fig.1(b) shows the single state transition
of Fig.1(a) but with a condition of C. Table 1 is a lookup table of Tab and its rows of
Tab[0], Tab[1],..., Tab[N − 1] are used to represent N state transitions of a FSM.

Table 1. Data structure of lookup table

fromState event toState act comp
Tab[0]
Tab[1]

...
Tab[N − 1]

After the construction of the lookup table of Tab, we propose the event handle of the
FSM to process the state transition caused by event input. We separate into two algo-
rithms to describe the two event handles without condition and with condition. Algorithm
II is proposed to process the event handle without condition which is written by a function

292 M.H. Hung, C.H. Hsieh, J. Wang

of EventHandle(e) inputting an event of e.

Algorithm II: Event handle of FSM without condition
1 Input: an event of e
2 function EventHandle(e)
3 cs← curStateFsm, ns← cs, act←null, flag ←false
4 for i←0 to N − 1 do
5 if cs =Tab[i].fromState and e =Tab[i].event then
6 ns←Tab[i].toState, act←Tab[i].act, flag ←true
7 exit for-loop
8 end if
9 end for
10
11 if flag then
12 if act 6=null
13 then call act.run()
14 else do nothing
15 end if
16 curStateFsm← ns
17 else
18 do nothing
19 end if

In the algorithm, we first define the variable of curStateFsm to store the current state
of the FSM. The beginning of the FSM execution initializes curStateFsm variable to one
of state. Then, one of events happens to trig a state transition and an action performance.
In Line 3, the four local variables of cs, ns, act and flag are initialized. cs and ns are
assigned by curStateFsm and act is assigned by null. The null value makes the variable
not to refer any object. flag is assigned by false that means not yet matching for the
current state and the event input before the table is looked up.

After the variable initialization, we travel all rows of the lookup table of Tab using a
for-loop in Line 4-9. And then, we match cs and e with Tab[i].fromState and Tab[i].event
for i=0, 1,..., N − 1 in Line 5. In Line 6, once the match of cs and e hits, ns is assigned
by Tab[i].toState and act is assigned by Tab[i].act. As a result, the next state of the
trigged state transition is ready in ns and act refers to the corresponding action runner.
The flag changes to true that it means a successful matching for the current state and the
event input, and then we exits the for-loop. If cs and e have no matching with Tab[0],
Tab[1],...Tab[N − 1], flag will keep false.

After the matching of cs and e, we check whether flag is true in Line 11. If yes, then
we check whether act 6= null. If act 6= null, then an action is required to execute in the
state transition, so we call act.run(), otherwise nothing performs, as the described in Line
12-15. Then in Line 16, curStateFsm is assigned by ns i.e. the next state, and the state
transition finishes. If flag is not true, that means any state transition and any action
will not perform.

To process the event handle with a condition, we propose Algorithm III which is written
by a function of EventHandle(e,c) inputting an event of e and a condition of c. Algorithm
III is the partially same as Algorithm II. The different part between two algorithms locates
in Line 6-11. The for-loop iteratively compares cs and e respectively with Tab[i].fromState
and Tab[i].event. When the match of cs and e hits in the for-loop, a variable of cp is as-
signed by Tab[i].comp, a condition comparator of the state transition. The condition

A Generalized Framework for FSM Implementation 293

comparator is used to check whether the inputting condition is equals to a specific condi-
tion.

Algorithm III: Event handle of FSM with condition
1 Input: an event of e and a condition of c
2 function EventHandle(e,c)
3 cs← curStateFsm, ns← cs, act←null, flag ←false
4 for i←0 to N − 1 do
5 if cs =Tab[i].fromState and e =Tab[i].event then
6 cp←Tab[i].comp
7 if cp =null then
8 ns←Tab[i].toState, act←Tab[i].act, flag ←true
9 elseif cp.equal(c) then
10 ns←Tab[i].toState, act←Tab[i].act, flag ←true
11 end if
12 exit for-loop
13 end if
14 end for
15
16 if flag then
17 if act 6= null
18 then call act.run()
19 else do nothing
20 end if
21 curStateFsm← ns
22 else
23 do nothing
24 end if

Then, we check whether cp = null. If yes, that means the selected transition with no
condition. Then, we assign ns, act and flag respectively to Tab[i].toState, Tab[i].act and
true in Line 8. If cp is not equal to null, that means a specific condition is required to per-
form the selected transition. Therefore, we call a function of cp.equal(c) to check whether
c is equals to a specific condition. If yes, then we assign ns, act and flag respectively to
Tab[i].toState, Tab[i].act and true in Line 10, otherwise flag keeps false. As a result, the
selected state transition and its corresponding action are able to perform according to a
specific set of condition and event.

3.2. Hierarchical FSM. Hierarchical structures are common used to represent the re-
lationships between main FSMs and their sub FSMs in FSM designs. A sub FSMs is
contained in one of states of a main FSM, which is called by superstate. The superstate
becomes the entrance and exit between the main FSM and the sub FSM. As shown in
Fig.2, a main FSM transfers the current state from W to X and its sub FSM is contained
in X superstate. When the machine entries X superstate, and we need to enable the sub
FSM and then perform an entrance action of O1. By contrary, when the machine exits
the X superstate, and we need to perform an exit action of O2 and then disable the sub
FSM. Moreover, once the sub FSM enables, its current state is assigned to an initial state
of Y .

To join entry/exit actions of the superstate and enable/disable of the sub FSM into
our proposed method, we add four rows our proposed lookup, including entryNs, exitCs,
enSub and deSub, as shown in Table 2. The entryNs field is used to store an action object

294 M.H. Hung, C.H. Hsieh, J. Wang

for the calling during an entrance of toState, which is specified by a state transition. The
exitCs field also stores an action object for an exit of a fromState. The enSub and deSub
fields are used to set whether the sub FSM enables or disables.

Figure 2. An example of hierarchical FSM

Table 2. Lockup table for hierarchical FSM

fromState event toState act comp entryNs exitCs enSub deSub
Tab[0] .
Tab[1] .

...
Tab[N − 1] .

Algorithm IV: Event handle of hierarchical FSM
1 Input: an event of e
2 function EventHandle(e)
3 cs← curStateFsm, ns← cs, act←null, flag ←false
4 actEntryNs←null, actExitCs←null, enSub←false, deSub←false
5 for i←0 to N − 1 do
6 if cs =Tab[i].fromState and e =Tab[i].event then
7 ns←Tab[i].toState, act←Tab[i].act, flag ←true
8 actEntryNs← Tab[i].entryNs, actExitCs← Tab[i].entryCs
9 enSub←Tab[i].enSub, deSub←Tab[i].deSub
10 exit for-loop
11 end if
12 end for
13
14 if flag then
15 if deSub then call subFsm.disable()
16 if actExitCs 6=null then call actExitCs.run()
17 if act 6=null then call act.run() else do nothing
18 if enSub then call subFsm.enable()
19 if actEntryNs 6=null then call actEntryNs.run()
20 curStateFsm← ns
21 else
22 do nothing
23 end if

A Generalized Framework for FSM Implementation 295

After the extension of the lookup table, we modify the proposed event handle from
Algorithm II to Algorithm IV for hierarchical FSM. In Algorithm IV, four variables of
actEntryNs, actExitNs, enSub and deSub are initialized in Line 4. When the current
state and the input event match fromState and event fields in a row of the lookup tables,
the four variables load value from the responding fields in the row, as written in Line 8-9.
If flag variable is true, before an action object starts to run, we call a disable function
of the sub-FSM object (subFsm) depending on deSub value and the exit action for from-
State starts to run if any, as written in Line 15-16. Similarly, after an action object starts
to run, the calling of an enable function of subFsm and the calling the entry action’s
run function for toState perform, as written in Line 18-19. The subFsm variable is used
to store a sub-FSM object belonging to a main FSM and the subFsm configuration is
needed to be done during the main FSM’s creation. In addition, subFsm variable can be
programmed into a list structure of FSM to store two and more sub-FSM objects.

4. Experimental result. In our proposed method, the lookup table structure and the
event handle function are the core parts of FSM framework. The core part is also basically
unchanged. We first define symbols of states, action and conditions, and then configure
the lookup table to build several of FSMs, so that it makes the framework to achieve
generalized purposes.

4.1. Unconditional FSM. To demonstrate the generalized ability, we applied our pro-
posed framework to two typical FSMs. One is an FSM of elevator door controlling and it
belongs to event handle without condition. The other one is an FSM of stack operation
and it belongs to event handle with conditions. In the meantime, we inputted event and
condition sequences to simulate of the two FSMs.

The FSM of elevator door controlling has four states of the door including opened,
closing, closed and opening. The two events for door’s button are ”request to open” and
”request to close”. Another two events for door’s sensor are ”sensor closed” and ”sensor
opened”. The three actions of the door are ”move to close”, ”move to open”, and ”stop
moving”. For the convenience of representation, we define symbols before the construc-
tion of the state transitions of FSMs. Table 3 lists the meanings and symbols of elevator
door controlling FSM. These symbols include states of S1, S2, S3 and S4, events of I1, I2,
I3 and I4, and actions of O1, O2 and O3. Based on these symbols, the state transition
diagram of the FSM is as shown in Fig.3.

Table 3. Meaning and symbol of FSM of elevator door controlling

Meaning Symbol
Door is opened S1

State Door is closing S2
Door is closed S3
Door is opening S4
Request to close I1

Event Sensor closed I2
Request to open I3
Sensor opened I4
Door moves to close O1

Action Door moves to open O2
Door stops moving O3

296 M.H. Hung, C.H. Hsieh, J. Wang

Figure 3. State transition diagram of elevator door controlling

Table 4. Configuration of Lookup table of FSM of elevator door controlling

fromState event toState act comp
Tab[0] S1 I1 S2 ActO1 null
Tab[1] S2 I2 S3 ActO3 null
Tab[2] S3 I3 S4 ActO2 null
Tab[3] S4 I4 S1 ActO3 null
Tab[4] S2 I3 S4 ActO2 null
Tab[5] S4 I1 S2 ActO1 null

Listing 1: Simulation result of elevator door controlling FSM
Line Output Line Output

1 Start to test an elevator door FSM. 12 I1(Request to close) is coming.
2 Current state is S1(Opened) 13 ActO1: Door moves to close.
3 I1(Request to close) is coming. 14 Current state is S2(Closing)
4 ActO1: Door moves to close. 15 I3(Request to open) is coming.
5 Current state is S2(Closing) 16 ActO2: Door moves to open.
6 I2(Sensor closed) is coming. 17 Current state is S4(Opening)
7 ActO3: Door stops moving. 18 I4(Sensor opened) is coming.
8 Current state is S3(Closed) 19 ActO3: Door stops moving.
9 I3(Request to open) is coming. 20 Current state is S1(Opened)
10 ActO2: Door moves to open. 21 Finish testing.
11 Current state is S4(Opening)

According to the state transition diagram, we configure the lookup table as listed in
Table 4. The six rows of Tab[0], Tab[1],..., Tab[5] represent the six transition in the di-
agram. For an example, the transition of I1/O1 from S1 to S2 is assigned by S1, I1, S2,
ActO1 and null respectively in fromState, event, toState, act and comp fields of Tab[0]. In
the act field, ActO1, ActO2 and ActO3 means action runners respectively corresponding
to O1, O2 and O3. Each action runner contains a run() function to perform a specific
operation. For an example, the action runner of ActO1 contains ActO1.run() function
to perform O1 action. Due to the FSM of event handle without condition, we assigned
comp fields to null in all rows.

During simulation phrase of the FSM, we first assigned the initial state to S1, and
then inputted an event sequence of I1, I2, I3, I1, I3, I4 and tested the function of
EventHandle(e) in one at a time way. The testing results displayed that the FSM trans-
ferred state by a sequence of S1, S2, S3, S4, S2, S4, S1 and performed a series of actions

A Generalized Framework for FSM Implementation 297

of ActO1, ActO3, ActO2, ActO1, ActO2, ActO3, as shown in Listing 1.

4.2. Conditional FSM. The FSM of stack operation has three states of the stack in-
cluding empty, full and ”not empty and not full”. The two events are ”request to push
into stack” and ”request to pop from stack”. The four actions of the stack operation are
”push”, ”pop”, ”overflow” and ”underflow”. The four conditions are ”only one space left
in the stack”, ”only one element left in the stack” and their inverts. To implement the
FSM of stack operation, we first define symbols and their meanings, as listed in Table 5.
These symbols include states of S1, S2, and S3, events of I1 and I2, actions of O1, O2, O3
and O4 and conditions of Nc, C1, C2, C1b and C2b. For the convenience of simulation, we
additionally define a condition symbol of Nc which means no condition. /C1 and /C2 are
respectively inverts of C1 and C2. We rewrite /C1 and /C2 respectively to C1b and C2b
for the convenience of expression. Based on these symbols, the state transition diagram
of the FSM is as shown in Fig.4.

According to the state transition diagram, we set the lookup table as listed in Table 6.
The eight rows of Tab[0], Tab[1],..., Tab[5] represent the eight transitions in the diagram.
For an example, the transition of I1[C1]/O1 from S2 to S3 is assigned by S2, I1, S2, ActO1
and CompC1 respectively in fromState, event, toState, act and comp fields of Tab[0]. In
the comp field, CompC1, CompC2, CompC1b and CompC2b mean condition comparators
respectively corresponding to C1, C2, C1b and C2b. Each condition comparator contains
an equal(c) function to perform a comparing operation which checks c whether equals to
an expected condition. For an example, the condition comparator of CompC1 contains
CompC1.equal(c) function to check c whether equals to C1 condition.

We first assigned an initial state of S1, input an event sequence of I1, I1, I1, I1, I2,
I2, I2, I2 with a condition sequence of Nc, C1b, C1, Nc, Nc, C2b, C2, Nc and tested the
function of EventHandle(e,c) with one pair of event and condition in a time. The testing
result displayed that the FSM transferred state by a sequence of S1, S2, S2, S3, S3, S2,
S2, S1, S1 and performed a series of actions of ActO1, ActO1, ActO1, ActO3, ActO2,
ActO2, ActO2, ActO4, as shown in Listing 2.

Table 5. Meaning and symbol of FSM of stack algorithm

Meaning Symbol
Stack is empty S1

State Stack is not empty and not full S2
Stack is full S3

Event Request to push into stack I1
Request to pop from stack I2
Push operation O1

Action Pop operation O2
Display overflow O3
Display underflow O4
No condition Nc
Only one space left in the stack C1

Condition Only one element left in the stack C2
Not only one space left in the stack /C1(C1b)
Not only one element left in the stack /C2(C2b)

298 M.H. Hung, C.H. Hsieh, J. Wang

Figure 4. State transition diagram of stack operation

Table 6. Configuration of Lookup table of FSM of stack operation

fromState event toState act comp
Tab[0] S1 I1 S2 ActO1 null
Tab[1] S2 I1 S2 ActO1 CompC1
Tab[2] S3 I1 S3 ActO3 null
Tab[3] S3 I2 S2 ActO2 null
Tab[4] S2 I2 S1 ActO2 CompC2
Tab[5] S1 I2 S1 ActO4 null
Tab[6] S2 I1 S2 ActO4 CompC1b
Tab[7] S2 I2 S2 ActO1 CompC2b

Listing 2: Simulation result of stack operation FSM
Line Output Line Output

1 Start to test a stack FSM. 15 I2(Request to pop) is coming with
2 Current state is S1: Empty Nc(No condition)
3 I1(Request to push) is coming with 16 ActO2: Pop operation

Nc(No condition) 17 Current state is S2: Not empty and not full
4 ActO1: Push operation 18 I2(Request to pop) is coming with
5 Current state is S2: Not empty and not full C2b(Not only one element left)
6 I1(Request to push) is coming with 19 ActO2: Pop operation

C1b(Not only one space left) 20 Current state is S2: Not empty and not full
7 ActO1: Push operation 21 I2(Request to pop) is coming with
8 Current state is S2: Not empty and not full C2(Only one element left)
9 I1(Request to push) is coming with 22 ActO2: Pop operation

C1(Only one space left) 23 Current state is S1: Empty
10 ActO1: Push operation 24 I2(Request to pop) is coming with
11 Current state is S3: Full Nc(No condition)
12 I1(Request to push) is coming with 25 ActO4: Underflow

Nc(No condition) 26 Current state is S1: Empty
13 ActO3: Overflow 27 Finish testing.
14 Current state is S3: Full

4.3. Hierarchical FSM. To demonstrate the application to hierarchical FSM using our
method, we implemented an air-condition controller’s FSM [12] based on the proposed
lookup table. The FSM is design to control the actions of fan and condenser of an air-
conditioner. Two buttons of power and AC mode trig events for the state transmissions
in the FSM. The FSM is represented by a hierarchical structure of a main FSM and a
sub FSM, as shown in Fig.5. The power button switches off state and running state each
other in the main FSM, where the running state is a superstate which contains the sub
FSM. In addition, the fan starts to work when the machine enters the running state. The
AC button switches fan-only state and AC state each other in the sub FSM of AC mode.
Meanwhile, the condenser starts and stops to work respectively in the entrance and exit

A Generalized Framework for FSM Implementation 299

moments of AC states.

Figure 5. Hierarchical FSM diagram of air-condition controller

Table 7. Meaning and symbol of FSM of air-condition controller

Meaning Symbol
Air-conditioner is off Off (S1)
Air-conditioner is running Running (S2)

State Only fan is on FanOnly (S3)
Condenser is on AC (S4)
Fan’s speed is low Low (S5)
Fan’s speed is high High (S6)
Press power button PowrBut (I1)

Event Press AC button ACBut (I2)
Press speed button SpeedBut (I3)
Turn on fan startFan (O1)
Turn off fan stopFan (O2)

Action Turn on condenser startCondenser (O3)
Turn off condenser stopCondenserUp (O4)
Speed up fan speedUp (O5)
Speed down fan speedDown (O6)

Before the configuration of the lookup table for the FSM of air-condition controller, we
need to define several symbols, as listed in Table 7. S1 and S2 are respectively off state
and running state in the main FSM. S3 and S4 are respectively fan-only state and AC
state in the sub FSM. I1 and I2 respectively represent the events caused by pressing power
button and AC button. Two actions of turning-on and turning-off of fan are respectively
O1 and O2. Turning-on and turning-off of condenser are respectively O3 and O4. There-
fore, according to these symbols and the state transition diagram, we configured the two
lookup tables for the main FSM and the sub FSM in the hierarchical structure, as listed
in Table 8.

We input the event sequence of I1, I2, I2, I1, I1, I2, I1 to the hierarchical FSM of
air-conditioner controller. As shown in Listing 3, the actions of startFan, startCondenser,
stopCondenser, stopFan, startFan, startCondenser, stopCondenser and stopFan executed
accordingly. In particular, when the I1 (powerbut) event is triggered during S4(AC) state,
the stopCondenser action is needed to perform first, and then the stopfan action performs,
as listed in Line 25-29. The stopCondenser action is programed in the disable() function
of the sub FSM of ACMode. When the current state is demanded exiting from AC, our

300 M.H. Hung, C.H. Hsieh, J. Wang

proposed algorithm calls the sub FSM disable() and the stopCondenser action can exe-
cutes reasonably before the entrance of the next state of S1(Off).

Table 8. Configuration of Lookup table of hierarchical FSM of air-
condition controller

fromState event toState act comp entryNs exitCs enSub deSub
Tab[0] S1 I1 S2 null null O1 null true false
Tab[1] S2 I1 S1 null null null O2 false true

(a) Main FSM
fromState event toState act comp entryNs exitCs enSub deSub

Tab[0] S3 I2 S4 null null O3 null false false
Tab[1] S4 I2 S3 null null null O4 false false

(b) Sub FSM

Listing 3: Simulation result of hierarchical FSM of air-conditioner controller
Line Output Line Output

1 Start to test a hierarchical Ac FSM 16 ActO2: stopFan
2 fsmMain’s current state is S1(Off) 17 fsmMain’s current state is S1(Off)
3 I1(PowerBut) is coming. 18 I1(PowerBut) is coming.
4 ActO1: startFan 19 ActO1: startFan
5 fsmMain’s current state is S2(Running) 20 fsmMain’s current state is S2(Running)
6 fsmSub’s current state is S3(FanOnly) 21 fsmSub’s current state is S3(FanOnly)
7 I2(ACBut) is coming. 22 I2(ACBut) is coming.
8 fsmMain’s current state is S2(Running) 23 fsmMain’s current state is S2(Running)
9 ActO3: startCondenser 24 ActO3: startCondenser
10 fsmSub’s current state is S4(AC) 25 fsmSub’s current state is S4(AC)
11 I2(ACBut) is coming. 26 I1(PowerBut) is coming.
12 fsmMain’s current state is S2(Running) 27 fsmACMode’s disable(): stopCondenser
13 ActO4: stopCondenser 28 ActO2: stopFan
14 fsmSub’s current state is S3(FanOnly) 29 fsmMain’s current state is S1(Off)
15 I1(PowerBut) is coming. 30 Finish testing

4.4. Concurrent-hierarchical FSM. We extended the above hierarchical FSM to a
concurrent-hierarchical FSM, as shown in Fig.6. Two Sub FSMs of AC Mode and Speed
are contained in a main FSM, and they can operate concurrently during the entrance of
Running state. The Speed FSM is given to control fan’s speed. To build Speed FSM, we
added several symbols in Table 7, including Low(S5) and High(S6) states, SpeedBut(I3)
event, and speedUp(O5) and speedDown(O6) actions. According to the diagram of the
concurrent-hierarchical FSM, we defined three lookup tables to configure the main and
two sub FSMs, as listed in Table 9.

We input the event sequence of I1, I2, I3, I3, I2, I1, I1, I2, I3, I1 to the concurrent-
hierarchical FSM of air-conditioner controller. The simulation outputs for the event se-
quence are as listed in Listing 4. As a result, ACMode and Speed sub-FSMs can operate
concurrently and independently. It is noted that we just apply the addition of new lookup
tables to finish the implementation of the concurrent FSMs without the modification for
our proposed event handle algorithm.

A Generalized Framework for FSM Implementation 301

Figure 6. Hierarchical FSM diagram of air-condition controller

Listing 4: Simulation result of concurrent-hierarchical FSM of air-conditioner controller
Line Output Line Output

1 Test a concourrent-hierachical Ac FSM 26 fsmSub1’s current state is S3(FanOnly)
2 fsmMain’s current state is S1:Off 27 fsmSub2’s current state is S5(Low)
3 I1(PowerBut) is coming. 28 I1(PowerBut) is coming.
4 ActO1: startFan 29 ActO2: stopFan
5 fsmMain’s current state is S2(Running) 30 fsmMain’s current state is S1(Off)
6 fsmSub1’s current state is S3(FanOnly) 31 I1(PowerBut) is coming.
7 fsmSub2’s current state is S5(Low) 32 ActO1: startFan
8 I2(ACBut) is coming. 33 fsmMain’s current state is S2(Running)
9 fsmMain’s current state is S2(Running) 34 fsmSub1’s current state is S3(FanOnly)
10 ActO3: startCondenser 35 fsmSub2’s current state is S5(Low)
11 fsmSub1’s current state is S4(AC) 36 I2(ACBut) is coming.
12 fsmSub2’s current state is S5(Low) 37 fsmMain’s current state is S2(Running)
13 I3(SpeedBut) is coming. 38 ActO3: startCondenser
14 fsmMain’s current state is S2(Running) 39 fsmSub1’s current state is S4(AC)
15 fsmSub1’s current state is S4(AC) 40 fsmSub2’s current state is S5(Low)
16 ActO5: speedUp 41 I3(SpeedBut) is coming.
17 fsmSub2’s current state is S6(High) 42 fsmMain’s current state is S2(Running)
18 I3(SpeedBut) is coming. 43 fsmSub1’s current state is S4(AC)
19 fsmMain’s current state is S2(Running) 44 ActO5: speedUp
20 fsmSub1’s current state is S4(AC) 45 fsmSub2’s current state is S6(High)
21 ActO6: speedDown 46 I1(PowerBut) is coming.
22 fsmSub2’s current state is S5(Low) 47 FsmACMode’s disable(): stopCondenser
23 I2(ACBut) is coming. 48 ActO2: stopFan
24 fsmMain’s current state is S2(Running) 49 fsmMain’s current state is S1(Off)
25 ActO4: stopCondenser 50 Finish testing

5. Conclusions. This paper has presented a generalized framework on algorithmic im-
plementation for FSMs. Dou to poor generalization, the traditional implementations of
nested switch-case statement is required to modification for different FSM applications.

302 M.H. Hung, C.H. Hsieh, J. Wang

Cooperating with different lookup tables, our proposed framework can be applied to vari-
ous FSMs without changes. The experimental results indicate that good generalization is
achieved by the proposed framework. Moreover, the proposed algorithmic implementation
will become good reference on hardware design of FSMs [13].

Table 9. Configuration of Lookup table of concurrent-hierarchical FSM
of air-condition controller

fromState event toState act comp entryNs exitCs enSub deSub
Tab[0] S1 I1 S2 null null O1 null true false
Tab[1] S2 I1 S1 null null null O2 false true

(a) Main FSM
fromState event toState act comp entryNs exitCs enSub deSub

Tab[0] S3 I2 S4 null null O3 null false false
Tab[1] S4 I2 S3 null null null O4 false false

(b) Sub FSM-1
fromState event toState act comp entryNs exitCs enSub deSub

Tab[0] S5 I3 S6 O5 null null null false false
Tab[1] S6 I3 S5 O6 null null null false false

(c) Sub FSM-2

Acknowledgment. This work was supported in part by Fujian University of Technology,
Granted KF-X18009 and GY-Z15087, and by Fujian Provincial Department of Science and
Technology, Granted No.2017J01729.

REFERENCES

[1] J. Zhang, H. Nian, X. Ye, X. Ji and Y. He, A Spatial Correlation Based Partial Coverage Scheduling
Scheme in Wireless Sensor Networks, Journal of Network Intelligence, vol. 5, no. 2, pp.34–43, 2020.

[2] J. N. Chen, Y. P. Zhou, Z. J. Hunag, T. Y. Wu, F. M. Zou and R. Tso An Efficient Aggregate
Signature Scheme for Healthcare Wireless Sensor Networks, Journal of Network Intelligence, vol. 6,
no. 1, pp.1–15, 2021.

[3] E. K Wang, C. M Chen, M. M. Hassan and A. Almogren A deep learning based medical image seg-
mentation technique in Internet-of-Medical-Things domain, Future Generation Computer Systems,
vol. 108, pp.135–144, 2020.

[4] E. K Wang, X Liu, C. M. Chen, S. Kumari, M. Shojafar and M. S. Hossain Voice-Transfer Attacking
on Industrial Voice Control Systems in 5G-Aided IIoT Domain, IEEE Transactions on Industrial
Informatics, DOI: 10.1109/TII.2020.3023677 , 2020.

[5] J. van Gurp and J. Bosch, On the Implementation of Finite State Machines, 3rd Annual IASTED
International Conference on Software Engineering and Applications vol. 3, no. 1, pp.1–15, 1999.

[6] X. Xu, L. Wang and H. Zhou, Implementation framework of finite state machines, Journal of Engi-
neering Design, vol. 10, no. 5, pp.251–255, 2003. (in Chinese)

[7] Z. Juhasz and A. Sipos, Implementation of a Finite State Machine with Active Libraries in C++,
Proc. of the 7th International Conference on Applied Informatics, vol. 2, pp.247-255, 2007.

[8] M. H. Abidi, A. Jakimi, R. Alaoui, and E.H. EI Kinani, An Object-Oriented Approach To Generate
Java Code From Hierarchical-Concurrent and History States, International Journal of Information
and Network Security, vol. 2, no. 6, pp.429–440, 2013.

[9] V. Spinke, An object-oriented implementation of concurrent and hierarchical state machines, Infor-
mation and Software Technology, vol. 55, no. 10, pp.1726–1740, 2013.

[10] Finite State Machine Editor, http://fsme.sourceforge.net/
[11] N. Almasri, L. Tahat and M. Alshraideh, Maintenance-Oriented Classifications of EFSM Transitions,

Journal of Software, vol. 11, no. 1, pp.64–79, 2016.
[12] J. Ali, Using Java Enums to Implement Concurrent-Hierarchical State Machines, Journal of Software

Engineering, vol. 4, no. 3, pp.215–230, 2010.
[13] Y. U. Chengjuei, W. U. Yihsin and S. Wang, An Approach to the Design of Specific Hardware Circuits

from C Programs, Journal of Information Science and Engineering, vol. 34, no. 2, pp.337–351, 2018.

