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ABSTRACT. The fundamental matriz is the mainstream solution to computer vision prob-
lems such as 3D reconstruction, real-time location and map building. Accuracy and effi-
ciency are two main measurement indexes in fundamental matriz estimation. When the
accuracy is not enough, it often needs to be corrected through back-end optimization and
other costly ways, and low efficiency will affect the real-time performance of the system.
In order to solve this problem, this paper proposes a mew estimation method of funda-
mental matriz based on improved quasi affine transformation. Specifically, based on the
QUATRE algorithm, this method first proposes a population cooperation method based on
a specific ”gene-chromosome” pattern. Secondly, combining the advantages of NSGA-II
in solving multi-objective problems, the Pareto dominance relationship of the population
chromosome was firstly calculated according to the objective function of mean polarity
distance and internal points in the way of NSGA-II, and the crowding degree was also
calculated. The operations of population initialization, mutation and crossover in the
discrete solution space represented by the homogeneous coordinate system are redefined.
The selection operation is then performed according to the elite policy of NSGA-II. In
addition, a confidence - based method to determine the number of iterations is proposed
to accelerate the algorithm. FExperimental results show that the proposed method can ef-
fectively eliminate noise and mismatching, and is superior to the current mainstream
methods in accuracy and efficiency, and can effectively solve the problem of fundamental
matrix estimation.

Keywords: Polar geometry;Fundamental matrix;Quasi affine transformation;NSGA-IT

1. Introduction. Fundamental matrix estimation is the key problem to obtain space
target information by using Structure from Motion [1, 2], Multi-view Stereo vision [3, 4]
and other methods. It is widely used in the cutting-edge research in the field of computer
vision, such as image-based Modeling [5, 6], Simultaneous Localization And Mapping |7,
8], Image Segmentation Algorithm [9] , etc.

The three-dimensional spatial information of the target object can be restored from a
set of two-dimensional sequence pictures of the same scene taken from different angles
and distances, and its theoretical basis is the polar geometric constraint existing between
them [10, 11]. The fundamental matrix describes the mathematical relationship between
matching feature point pairs in correlation images under polar constraint. Relevant studies
can be first seen in algorithms such as camera self-calibration [12, 13]. Let p;(z;,y;, 1) and
pi(z;, i, 1)T be the homogeneous coordinates of the I (1 < i < n) feature points matched
in the first image I and the second image I’, respectively. Equation (1) describes the
polar constraint relationship between these feature points.

(p)) Fpi =0 (1)

F' is the fundamental Matrix, and N is the number of feature points. The estimation
of F'is an overdetermined problem of equations, which can be solved mathematically for
the feature points with a given number of 8. Compared with the general errors of the
true points, the errors of the inner points and the outer points can be divided into two
categories. Then, to get more accurate estimation results, the key lies in the selection
method of 8 pairs of feature points. A set composed of 8 pairs of interior points is
called the minimum interior point set, and each set of minimum interior point sets can
determine a fudamental matrix estimation model. (1) The stronger the fitting ability of
the fundamental matrix estimation model to all feature points, the better the minimum
set of inner points. (2) The smaller the average antipode distance calculated by the
fudamental matrix estimation model, the better the minimum inner subset.

Accuracy and efficiency are the main indicators to measure the fudamental matrix
estimation algorithm. When the accuracy is not enough, it often needs to be corrected
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at a high cost [14]. Low efficiency will affect the real-time performance of the system.
To solve the above problems, this paper introduces the strategies of intelligent algorithms
quasi affine transformation evolutionary (Quatre) [15-18] and multi-objective optimization
algorithm (NSGA-II) [19] into the estimation of fundamental matrix.

(1) A population collaboration method based on specific gene chromosome model is pro-
posed for the estimation of fudamental matrix. Specifically, the matching feature point
pair is regarded as a gene and consists of 8 genes, and a chromosome is composed of 8
genes. The fudamental matrix is estimated by this specific population collaboration. (2)
The original QUATRE algorithm is improved, and the Pareto dominance relation and
congestion strategy of NSGA-II are introduced. The new definition of population initial-
ization, mutation and crossover in the discrete solution space represented by homogeneous
coordinate system makes it possible to solve the estimation problem of fundamental ma-
trix. In particular, this algorithm improves the fast non dominated sorting algorithm
to realize the Pareto dominance: this algorithm places the chromosome with matching
feature number less than 8 in the last layer of Pareto dominance, which is the place where
the original Pareto dominance does not have. (3) The elite strategy of NSGA-II is in-
troduced into the selection operation to obtain the selected population. The new species
population has higher fitness to the two objective functions and more reasonable chromo-
some distribution. First, the mutated population and the parent population were merged.
According to the order of Pareto rank from low to high (especially, the chromosome with
matching feature points less than 8 is put in the last layer of Pareto dominance relation,
and the chromosome with matching feature points less than 8 is considered as the worst
chromosome) The whole layer population is put into the parent population until all the
individuals in a certain layer cannot be put into the parent population. The individuals
in this layer are arranged from large to small according to the crowding degree, and they
are put into the parent population in turn until the parent population is filled, so as to get
a new selected population. (4) This paper proposes a method to determine the number of
iterations based on confidence to accelerate the algorithm. Different from the QUATRE
algorithm, which uses fixed number of iterations to find the optimal solution, this method
calculates the termination conditions in real time based on the given confidence level,
which improves the efficiency of the algorithm.

2. Problem Statement and Preliminaries. The fudamental matrix estimation meth-
ods based on computer vision mainly include linear method, iterative method and robust
method.

The typical representative of linear method is the 8-point algorithm and its related
extension algorithm. The 8-point algorithm [20] was first proposed by Longuet-Higgins
et al. That is 8 pairs of randomly selected feature points were used to calculate the
fundamental matrix. This method is sensitive to noise and mismatching. On this basis,
Hartley et al. proposed an improved 8-point algorithm [21], which firstly normalized
the matching feature points on scale and translation, then calculated the fudamental
matrix using 8-point algorithm, and finally carried out inverse regularization operation.
Experimental results show that the improved strategy can suppress the noise to a certain
extent. However, since 8 pairs of feature points are still obtained by random method, the
influence of external points on the estimation results cannot be eliminated fundamentally.
Iterative methods mainly include M-estimation method [22] and event deletion method
[23]. The feature of M-estimation method is that all feature points are iterated and
different weights are given to the outer and inner points. For example, the dynamic
penalty weighting mechanism introduced in literature [24]. This method has a good effect
on noise suppression, but it is not effective on data sets with many external points. The
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event deletion method is improved to some extent, but the computational complexity is
still large.

Representatives of robust methods include minimum median method (LMEDS) [25,
26], random sampling consistency algorithm (RANSAC) [27, 28] and its related improved
algorithms (for example, higher than minimum subset algorithm HMSS [29]), etc. The
LMEDS algorithm is relatively simple and sensitive to noise and mismatching. Xu Jinshan
et al. proposed a homography matrix adaptive method [30] based on LMEDS to eliminate
external points and shorten the number of iterations. The core idea of RANSAC algorithm
is to use the distance from the feature point to the polar line as the basis to test a
large number of feature points set, from which to find the optimal result. It is one of
the mainstream estimation methods of fundamental matrix at present. But RANSAC
algorithm needs a lot of random initialization of the minimum subset. For this problem,
HMSS algorithm uses a sampling algorithm higher than the minimum subset to speed up
the search of the optimal inner point set. However, the relationship between the accuracy
of the algorithm and the size of the set of ideas used is not clear with the HMSS method.

The meta-heuristic optimization algorithms have been shown to be useful to solve many
engineering problems. Those promissing optimization algorithms include the Genetic Al-
gorithm (GA) [31, 32], Differential Evolution (DE) [33, 34], Particle Swarm Optimization
(PSO) [35, 36], Ant Colony Optimization (ACO) [37, 38], Grey Wolf Optimizer (GWO)
(39, 40], Cat Swarm Optimization (CSO) [41, 42], Fish Migration Optimization [43-45]
and QUasi-Affine TRansformation Evolutionary (QUATRE) [46-49]. Since the evolution-
ary algorithm has the characteristic of intelligent optimization in the solution space, this
method adopts the improved QUATRE algorithm and NSGA-II algorithmto solve the
fundamental matrix estimation problem. Compared with the linear method, the inter-
ference of external points caused by noise and mismatching can be eliminated effectively.
Compared with the iterative method, it can gather the global optimal solution quickly
because of the particle swarm cooperation. Compared with the robust method, the num-
ber of subsets extracted can be reduced effectively. The following is the basic concept of
QUATRE algorithm.

2.1. QUATRE algorithm. QUATRE is a kind of particle swarm evolution algorithm,
put forward by Meng and others, The name comes from the following equation in line 2
which means quasi-affine transform.

B = ngest +Cc* (X'rl - Xr2)
o 2
X M@X + TR B 2

Equation 2 shows the core idea of the population evolution of the QUATRE algorithm.
The first line of the formula indicates that each population particle moves a certain
distance toward the random direction expressed by X,; — X,» with the position Xy
of the global optimal particle as the center, where ¢ is the coefficient of the moving step
length, and the results are stored in matrix B. The second row indicates that the random
perturbation represented by B is randomly applied to the current particle coordinate
matrix X in the form of a kind of affine transformation, where the joint search matrix M
is obtained as shown in Equation 3. That is, the lower triangular matrix whose element
value is 1 is randomly swapped, and then the 0 and 1 elements in each row are randomly
swapped M is all binary elements in M taking "logical not” operation.
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From the point of view of population evolution, it is a process of population evolution
including mutation and crossover operation. Therefore, B and M can also be called
mutation matrix and crossover matrix respectively. The fundamental matrix estimation
problem can be regarded as the optimization problem of selecting 8 pairs of interior points
from a given finite matching feature point pair space. The problem space is discrete, and
the original QUATRE optimization method is defined in continuous domain. Therefore,
the above optimization strategy needs to be improved to solve the fundamental matrix
estimation problem. The specific improvement methods are described below.

2.2. NSGA-II algorithm. NSGA-II algorithm is a multi-objective optimization algo-
rithm, which was proposed by Deb K et al. It is an algorithm that stratified the population
according to the dominant relationship of the solution, obtained the Pareto dominant re-
lationship, then calculated the crowding degree for each layer, and finally used the elite
strategy to complete the selection operation. The elite strategy is to merge the mutated
population with the parent population. In the order of Pareto level from low to high, the
whole layer population is put into the parent population until all individuals in a certain
layer cannot be put into the parent population. The individuals in this layer are arranged
from large to small according to the crowding degree, and they are put into the parent
population in turn until the parent population is filled, so as to get a new selected pop-
ulation. In this way, the chromosome population has higher fitness to the two objective
functions, and the chromosome distribution is more uniform and reasonable.

The fast non-dominated sorting and congestion calculation of NSGA-II algorithm reveal
the dominant and distribution relationships among matching feature points. It provides
information for the mutation operation of the algorithm. The elite strategy of NSGA-II
algorithm also provides ideas for the selection operation of this algorithm.

3. Our method. This section mainly introduces the fundamental matrix estimation
method based on NSGA-IT and improved quasi affine transformation. Specifically, this
method uses matched feature point pairs to build a population, combines with the op-
timization ability of particle swarm, the advantages of QUATRE algorithm in solving
combinatorial problems and the advantages of NSGA-II in solving multi-objective opti-
mization problems to estimate the fundamental matrix, and the basic process is shown in
Figure 1. With matching feature point pairs as input, the first generation population is
initialized based on a specific ”gene-chromosome” pattern. Then the chromosomes were
sequenced based on the internal point rate and the termination conditions of the itera-
tion were calculated. When the termination condition is geted, the algorithm ends and
outputs the corresponding estimation value of the fundamental matrix. Otherwise, the
population evolves iteratively through mutation, crossover and selection operations.

The fast non-dominated sorting and congestion calculation of NSGA-II algorithm reveal
the dominant and distribution relationships among matching feature points. It provides
information for the mutation operation of the algorithm. The elite strategy of NSGA-II
algorithm also provides ideas for the selection operation of this algorithm.

3.1. Initialization.
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FIGURE 1. Our method flow chart

3.1.1. Population structure. Different from the QUATRE algorithm, which generates a
specified number of particle swarm initialization with random coordinates in continuous
coordinate space, the candidate feature points are known in the fudamental matrix esti-
mation and are usually represented by homogeneous coordinates to simplify the operation.
In addition, since 8 pairs of feature points can determine the estimation model of a fu-
damental matrix, the algorithm will match the homogeneous coordinates of the feature
point pairs as genes, and initialize the population by using 8 genes to form a chromosome.

Specifically, A specific feature point recognition algorithm (such as SURF [50]) is used
to obtain N pairs of matching feature points in two images at first,and then it is expressed
as an N x 6 matrix A as shown in Equation 4 and Equation 5, where pg; 1)(2,1), Y1), 1)"
and p(i 2)(2(.2), Ya.2), 1) (1 <4 < N) are the two homogeneous coordinates of the ith pair
feature points respectively.

In order to realize the random selection of NP chromosomes as the first generation
of species X (1), can according to the first line of disrupting A, then from A first line
of the order every time take eight lines, take NP times in A row, X(1) can be said
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for the NP x 8 matrix as shown in Equation 5, the initial population is completed as
T(uw) = (P((u=1)x8+v,1)s D((u—1)x8+v,2)). Bach row of X (1) is a chromosome.

Pa1) P2

A= Pia)y P2 (4>

L P(v,1) P(V2)

x(l,l) RN 33(1,8)
X(1) = S (5)

T(NP1) .-+ T(NPS)

3.1.2. Fast non-dominated sorting and crowding degree calculation. Fast non-dominated
sequencing: Chromosomes with matching feature points greater than 8 in A are selected
as Al, and those with matching feature points less than 8 in A are denoting as A2. The
non-dominated sequencing rank of A2 is the lowest, and the crowding degree is infinite.
The fast non-dominated sorting process of Al is as follows: calculate two parameters IV,
and S, for each X in Al matrix, where N, is the number of individuals dominating X
in A1, and S, is the number of individuals dominating X in Al. The dominating mode
is determined according to the Pareto dominating relation: for the components with
the minimum multiple objectives, n target components f;(i = 1,...,n) vector f(z) =
(f1(2), f2(Z),..., fu(Z)), the solution set U in any given two decision variables z, and Z,:

(1)If and only if, for Vi € 1,...,n, have (f;(z,)) < (fi(Z,)) , says T, dominateZ,,.

(2)If and only if, for Vi € 1,...,n, fi(Z,) < fi(Z,), and there are at least one j €
1,...,n, make f;(z,) < f;(Z,), says &, weakly dominant z,.

(3)If and only if, for Vi € 1,...,n, and at the same time 35 € 1,...,n, make f;(z,) >
[i(Zy), says Z,, with Z, mutually.

The population Al was graded according to the above dominance relationship: (1)
Find all the individuals with n,=0 in the population and store them in set F'1. (2) For
each individual I in the current F'1, the dominated individual set is 5;, traversal each
individual 1 in S; and execute N;, = Ny_;. If N, = 0, the individual 1 will be saved in
set H. (3) The individual in F'1 is considered as the non-dominant individual at the first
level, and H is taken as the current set. The above operation is repeated to complete the
grading of Al.

Congestion degree calculation: Controlling the uniform distribution of matched pixel
pairs through congestion degree is conducive to improving the accuracy of the algorithm.
Crowding is the density of individuals around an individual in a population. In this
method, the distribution density ng of the finger matching pixel pairs. The calculation
steps are as follows:

(1) Let ng=0,n€1,...n.

(2) Perform for each objective function: The individuals of this level are sorted according
to the objective function, and f/** is the maximum value of the individual objective
function, and f™" is the minimum value of the individual objective function.
(3)Calculate ng = ng + (f(i + 1) — fr(i — 1)) /(fmer — fmin) Sincluding f,,(i + 1) is the
individual sorted after an objective function values. The crowding value is obtained.

And then combine Al and A2. In this way, all operations of population initialization
are completed, the population is stratified and the crowding degree is calculated.
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3.2. Fitness function and termination conditions. Evolutionary algorithm requires
setting an index to measure the merits and demerits of individuals in order to search
for the best. In this method, the number of sequence layers and the crowding degree of
the sequence layer obtained by fast non-dominant sequencing were used to measure the
individual’s quality. It is worth noting that the original fast non-dominant sequencing is
improved, and the chromosomes with matching feature number less than 8 are placed in
the last layer of Pareto dominance relationship. Chromosomes with less than 8 feature
spots are considered to be the worst chromosomes. Specifically, for any chromosome, an
estimation model of the fundamental matrix can be determined by using the 8 pairs of
feature points contained in the chromosome. Through this model, the distance d from
any given feature point to the corresponding polar line can be further calculated, and
the feature points whose d is less than the given threshold are defined as interior points.
Note that in the N pairs of feature points, the number of interior points determined by
the corresponding estimation model of a chromosome is NV,,, then the interior point rate
W of this chromosome can be defined as W = N,,/N. The fitness function of inner
points can be defined according to the calculation process of W, and the second fitness
function can be defined according to equation (10). Then two fitness functions were
calculated for the population, and the fitness values were quickly sorted and the crowding
degree calculated. According to the calculation results of fast non-dominated sequencing
and crowding degree, the higher the number of chromosomes in the sequence layer and
the lower the crowding degree value, the better the chromosome, which represents the
more inner points, the smaller the mean distance to the opposite pole and the less the
surrounding chromosome distribution.The coordinate value of the chromosome with the
most internal points in the first layer is expressed by Xgpest-

In order to ensure the exhaustivity of the algorithm, the population evolution of QUA-
TRE has a fixed number of iterations, Gen = 10000 x DN/P , where NP is the size of
the population and D is the dimension of each individual population. Gen can be defined
according to the equation 6.

log (1 — p) (6)
lOg(l - wl?est)

Where p is the pre-specified confidence (for example, p = 99%), represents the proba-
bility that all 8 rows are randomly selected from the feature point set as interior points,
and wyg is the interior point rate corresponding to Xgpes:. If the current population al-
gebra K /Gen, the algorithm will be terminated; otherwise, the iterative evolution of the
population will continue according to the mutation, crossover, and selection operations
described below.

gen =

3.3. Evolutionary strategy. According to the idea of species evolution, the process of
population evolution involves individual changes. Through natural selection, good genes
will be preserved and bad mutations eliminated. For the evolutionary algorithm, the cur-
rent population algebra is K, and the above process is represented by mutation, crossover
and selection operations on population X (K') in order to generate a new generation of
population X (K 4 1). Among them, the mutation operation produces the mutation con-
tent, the crossover operation realizes the gene change, the selection operation represents
the survival of the fittest.

3.3.1. Variation operation. Since chromosomes are determined by genes, according to the
discussion in Section 3 about the higher the number of chromosomes in the sequence and
the lower the crowding value, the better the chromosome is. It can be further derived
that the chromosome with the higher the number of chromosomes in the sequence and the
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lower the crowding value contains the more excellent genes. Different from the variation
method used by QUATRE as shown in equation 1, the present method defines the mutant
genes (P(/u)’ P(/i,2))( 1 < I < N’) as genes mainly from the top R layer chromosomes in
X(k), and A small number of genes from the bottom N’ — r layer chromosomes, with the
total number of N’. The matrix A" composed by this method is shown in equation 7. In
order to facilitate the subsequent crossover operation, D genes can be randomly selected
from A" as A chromosome, and N P times can be carried out continuously (/NP is the size
of the population) to obtain the mutant population represented by NP x D matrix B as
shown in equation 8.

pl(l,l) p/(1,2)

A= p/(m) p,(z',Q) (7)

i p,(N,l) pzN,Q) i
:17’(1’1) x’(LD)

B = : : (8)
37/(NP,1) x/(NP,D)

3.3.2. Cross operations. The crossover operation is to realize the mutation of the pop-
ulation, which will be carried out in the form of quasi-affine transformation proposed
by QUATRE. If the population generated by gene mutation in current population X is
denoted as X', then X’ should not only retain some genes of X, but also contain some
mutant genes from B. The realization method is shown in Formula (3).

X' MQ)X+M)B (9)

Which cross matrix M, M generated method and consistent mentioned in section 2.2,

the operator /otimes said to its left and right two multiplication matrix corresponding

to the position of the element, the matrix B, M, X and X’ with the same number of

columns, M any position in the 0/1 element specifies the X’ the corresponding position of

the corresponding location of genes from X/B. Since the distribution of the 0/1 element
is random, the mutations are also random.

3.3.3. Select operation. The elite policy of NSGA-II is introduced in the selection op-
eration. In this way, the new population has higher adaptability to the two objective
functions and more reasonable chromosome distribution. Here are the steps:

(1) K is the algebra of the current population X, the mutant population is X’. First,
merge X’ and X. Then, the crowding degree of the combined population was calculated,
and the whole layer population was placed into the parent population in order of Pareto
rank from low to high, until the individuals in the layer could not all be placed into the
parent population.

(2) Arrange the individuals in this layer from large to small according to the crowding
degree, and place them into the parent population successively until the parent population
is filled, so as to get a new selection population.

This completes the selection operation. Among them, the comparison method of chro-
mosome pros and cons is still realized based on the number of sequencing layers and the
crowding degree of each layer as described in Section 3.2. After the iteration is stopped,
it is necessary to find out the 8 pairs of matching feature points that are used to calculate
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the average polar distance from the population after the last selection, that is, the opti-
mal chromosome. This method adopts the chromosome with the smallest average polar
distance in the first layer of the population after the last selection as the final output.

4. Experiment. This section will explain and analyze the experiments and results car-
ried out to illustrate the accuracy and efficiency of the method. The experimental data
are 30 scenes and a total of 60 pictures (resolution: 1440 x 1080) taken with Xiaomi
Mix 2S. All experiments were run on a laptop computer with Intel dual-core i5 processor
(2.5GHz) and 16GB memory, and the programming environment was MATLAB R2017A.
In order to facilitate presentation, 6 SURF feature points were selected from 30 scenes to
pair with typical scenes of different scales, and their numbers were numbered as shown in
Table 1.

Firstly, the method is applied to the collected input data, and the fudamental matrix
represented by each scene is estimated to test the feasibility of the method. Figure 2 shows
the results of Scene 6 and Scene 4 respectively, where line segments are used to connect
the matching feature points in the two images. The upper part is the result obtained by
using SURF operator, and the lower part is all the interior points determined by the fu-
damental matrix estimation model based on SURF feature point pairs obtained by using
this method. It can be seen that this method can effectively eliminate the mismatched
points in SURF matching feature point pairs for solving problems of different scales.

TABLE 1. Sample data

Picturel Picture2 The number of matched feature points After eliminating matched points

252 230 124 98

531 496 309 274
762 706 539 460
1151 1036 656 588
1623 1468 788 713
1663 1551 1033 896

FIGURE 2. The result of our method applying to scene of No.6 (left) and
No.4 (right)
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In terms of the overall performance, the proposed method is significantly superior to the
other three algorithms in terms of the average distance between poles. In terms of standard
deviation, it is comparable to LMEDS, and superior to RANSAC and MASC. Therefore,
this method has obvious advantages over the contrast method in terms of accuracy. As
can be seen from the longitudinal comparison of different scenes, this method shows better
applicability in scenes with more feature points. However, the more feature points, the
more time overhead of the algorithm will be. Therefore, the experimental comparison will
be made from the efficiency of the algorithm.

5. Main Results. in order to evaluate the accuracy of the algorithm, a comparative
experiment will be carried out on the polar distance d as described in Formula (4).

1 (p/TFp)Z (pTFp’)2
d = o 2 7 T 2 5)
2\ (FP){+(FP);  \ (FTP)i+ (FTP);
Where F is the fudamental matrix obtained through the evaluation method, P and P’

are the two points of the feature point pair respectively, and (*)1 and (*)2 represent the
first and second components of the vector * respectively.

(10)

5.1. Accuracy comparison and analysis. Using the mean oppose-pole distance and
standard deviation as measurement indexes, comparative experiments can be carried out
on LMEDS, RANSAC, MSAC and this method. Specifically, each algorithm will be run
100 times in all experimental scenarios, and each time equation 10 will be applied to all
interior points determined by the algorithm, and the results will be averaged. Figure 3
shows the experimental results of each algorithm in Scenes 1 to 6. The horizontal axis of
the left figure represents the 4 algorithms and the 6 scenarios applied (from left to right,
Scenes 1 to 6), and the vertical axis represents the average polar distance. The horizontal
axis of the right figure is the number of SURF feature points of each scene (Scene 1 to
Scene 6 from left to right), and the vertical axis is the standard deviation.

5.2. Efficiency comparison and analysis. In addition to accuracy, the algorithm can
also be evaluated from the aspect of running efficiency. The average running time of the
above algorithms in the comparative experiment described in Section 4 was recorded, as
shown in Fig. 4. In the figure, the horizontal axis represents the four algorithms and
the six scenarios applied (Scene 1 to Scene 6 from left to right), and the vertical axis
represents the average running time (unit seconds). It can be seen that the operation
efficiency of this method still takes less time when the number of feature point matches



324 Y.K. Fan, S.J. Liu, L.P. Kong and J.S. Pan

gradually increases. With the increase of the problem size (i.e. the number of feature
point pairs), the proposed algorithm can converge to the optimal solution faster than
other algorithms due to particle swarm cooperation.

1

—#—Imeds
09T ransac| |
—=—msac
08r ——ours
0.7 |
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FIGURE 4. Running time of the experiment

6. Conclusions. In this paper, we propose an improved estimation method for the fu-
damental matrix of quasi affine transformation, which combines the optimization ability
of particle swarm optimization and the advantage of QUATRE algorithm to solve combi-
natorial problems to estimate the fudamental matrix. To be specific, firstly, a population
cooperation method based on a specific gene-chromosome pattern is proposed for fuda-
mental matrix estimation. Secondly, the methods of population initialization, mutation
and crossover in the discrete solution space represented by the homogeneous coordinate
system are redefined, which makes it possible to use the framework of QUATRE algorithm
to solve the problem of fudamental matrix estimation. In addition, a confidence - based
method to determine the number of iterations is proposed to accelerate the algorithm.
Compared with the traditional method, the proposed method can effectively eliminate the
noise and the outer point interference caused by mismatching, and has the advantages of
fast optimization and solution. Experimental results show that this method is superior
to the current mainstream estimation methods in accuracy. In terms of efficiency, it is
better than other algorithms after the number of feature points gradually increases. In
general, the proposed method shows good performance after combining the advantages
of NSGA-IT multi-objective optimization and QUATRE algorithm to solve combinatorial
problems.
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