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Abstract. Particle swarm optimization (PSO) algorithm has some advantages, such as
fewer control parameters, and faster convergence speed. It shows a considerable optimiza-
tion performance for solving numerical optimization and various application problems in
reality. However, the PSO algorithm usually possesses some defects such as low conver-
gence accuracy and easy to fall into local optimum while resolving some complex issues.
An adaptive particle swarm optimization algorithm using scale-free network topology is
proposed. Based on the characteristics of scale-free network topology with power-law dis-
tribution, this novel algorithm can construct a corresponding neighborhood for each parti-
cle. Then, it selects the elite particles from the community be participated in the particle
evolution process and consider full play to the guiding role of elite particles within the
population search process. In addition, a new adaptive weight strategy and an introduc-
tion to the differential evolution operation for achieving a balance ability to the global and
local exploration within the search process are proposed. To verify the performance of the
proposed algorithm experimentally, eighteen benchmark functions are employed. Exper-
imental results show that the proposed adaptive particle swarm optimization algorithm
using scale-free network topology has efficient robustness which competitive solutions can
be obtained.
Keywords: Particle swarm optimization; Scale-free network topology; Inertia weight;
Self-adaption; Neighbor.
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1. Introduction. With the exploitation of industrial manufacturing and computational
intelligence, many problems in real life have become a promising research issue, and the
traditional accurate algorithm is more and more challenging to meet the needs of opti-
mization performance. Swarm intelligence optimization algorithm, has received more and
more research because of its high efficiency and stability in solving complex problems. For
example, particle swarm optimization algorithm, ant colony algorithm, firefly algorithm,
artificial bee colony algorithm and so on. Where particle swarm optimization algorithm
is a population intelligent optimization algorithm proposed by Kennedy and Eberhart in
1995, which is based on the research of birds foraging behavior [1]. Since the algorithm
was proposed, it has been favored by many scholars because of its unique group search
behavior and efficient and stable optimization performance. Particle swarm optimization
algorithm has been widely used in humanities, engineering, chemistry, medicine, high-end
physics, and other scientific fields, such as nonlinear constrained discrete variable opti-
mization problem in the field of engineering design [2], complex scheduling optimization
problems such as high-dimensional, nonlinear, multi constraint in the area of power sys-
tem [3], and robot trajectory planning in the area of robot intelligent control questions
[4, 5].

The research shows that the performance of PSO depends on the setting of control
parameters, such as population size, inertia weight, cognitive coefficient, and so on. To
get better weight parameters, Shi and Eberhart [6] proposed to use fixed inertia weight to
balance the global exploration and local exploitation ability of the population. However,
this strategy often makes the algorithm have poor local exploitation ability. Therefore,
Shi and Eberhart [7] proposed a strategy to make the inertia weight change linearly in
each generation. The experimental results show that the weight decreases linearly from
the initial value of 0.9 to 0.4, the optimization performance of the algorithm is greatly
improved. Liu et al. [8] proposed an inertia weight adaptive strategy based on the re-
lationship between the fitness and average fitness of particles. If the fitness of particles
is lower than the average fitness, it reduces the effect of the previous velocity and makes
them tend to exploitation. On the contrary, it increases the effect of the previous velocity
and makes them tend to explore. Tanweer et al. [9] proposed a self-tuning particle swarm
optimization algorithm. By controlling the inertia weight of each particle in the evolu-
tion process, the inertia weight of the optimal particle increases and the inertia weight of
other particles decreases, To improve the local exploitation ability of the optimal particle,
and at the same time, make other particles have higher local-global exploration ability.
Ratnoweera et al. [10] proposed a particle swarm optimization algorithm with time-
varying acceleration coefficient, i.e., in the process of evolution, the individual cognitive
and social cognitive coefficients are linear, individual cognitive coefficient decreases, so-
cial cognitive coefficient increases, and then realizes the transition from global exploration
to local exploitation. Adam et al. [11] conducted experiments on eight particle swarm
optimization algorithms under different population sizes and dimensions, and analyzed
the impact of population size on algorithm performance in the face of various problems.
Xu [12] introduced the average absolute value of all particle velocities, and proposed a
strategy of dynamically adjusting inertia weight through feedback control. Zhou and Shi
[13] proposed a method to adaptively adjust inertia weight based on particle velocity in-
formation, and used velocity information to replace position information based on APSO
[14]. Agrawal and Tripathi [15] adopted an adaptive inertia weight strategy based on a
binomial probability distribution for global optimization, which improved the accuracy
and convergence speed of the particle swarm optimization algorithm. Kang et al. [16]
proposed a non-inertial particle swarm optimization with elite mutation-Gaussian pro-
cess regression (NIPSO-GPR) to optimize the hyper-parameters of GPR. NIPSO-GPR
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can adaptively obtain hyper-parameters of GPR via uniform non-inertial velocity update
formula and adaptive elite mutation strategy. Wu et al. [17] proposed ant colony sys-
tem to data mining algorithm takes the multi-threshold constraint to secure and sanitize
patents’ records in different lengths, which is applicable in a real medical situation.

In order to solve the problems of premature convergence and easy to fall into the local
optimum of particle swarm optimization algorithm, researchers have done lots of im-
provement work. Li et al. [18] proposed a multi-population collaborative particle swarm
optimization algorithm based on dynamic piecewise mean learning strategy and multi-
dimensional comprehensive learning strategy, which adopted multi-dimensional compre-
hensive learning strategy to accelerate the convergence rate of solution, and introduced
a differential mutation operator to increase the diversity of particle swarm. Meng et al.
[19] based on the improved particle swarm optimization algorithm and cross search opti-
mization algorithm, updated the sequence of particle swarm optimization, enhanced the
global convergence ability of population through horizontal crossover, and enhanced the
diversity of particle swarm optimization through the vertical crossover. Wang et al. [20]
proposed an incentive evolutionary game model for stimulating cooperation among nodes.
By constructing our game model in routers, normal nodes and abnormal nodes are en-
couraged to participate in network collaboration by self-evolution of gaming. Then after
evolution, the entire network can reach a general cooperative state of nodes. Wu et al.
[21] proposed a new concept of minimal support for solving this issue. In compliance with
a given threshold function, the proposed approach would set a tighter threshold for an ob-
ject containing several items. Yang et al. [22] proposed a multigroup multistrategy SCA
algorithm. The algorithm executes multiple populations in parallel, and each population
executes a different optimization strategy. Information is exchanged among populations
through intergenerational communication. Zhang et al. [23] proposed a short-term traf-
fic flow prediction algorithm of quantum genetic algorithm learning vector quantization
(QGA-LVQ) neural network to forecast the changes of traffic flow. Utilizing the global
optimization ability of quantum genetic algorithm (QGA), it is combined with LVQ neu-
ral network to overcome some shortcomings of LVQ neural network, including sensitive
to initial weights and prone to local minima. Kang et al. [24] proposed a solution,
which utilizes data mining technique with clustering concept, by gathering the current
feedback data that have from our SPN (Smart Protection Network). It can form these
data in groups with similarity, and by deploying these data to client side, to achieve the
reduction of traffic usage.

Although the researchers speed up the convergence of the algorithm by parameter adap-
tation and population diversity, there are still problems that the experience of particle
swarm in the search process is not fully utilized. In order to consider full play to the expe-
rience learned by elite particles in the population, and better balance the exploration and
exploitation ability of particle swarm optimization in the search process, a novel adap-
tive particle swarm optimization algorithm using scale-free network topology (SFAPSO)
is proposed. Where the scale-free network topology is used to construct the population
neighborhood, the velocity differential strategy is used to update the particle velocity,
and a new inertia weight adaptive is used to balance the global exploration and local
exploitation ability. Experimental results show that the proposed algorithm can make
full use of the experience of elite particles in evolutionary process, and effectively improve
the search ability and convergence accuracy of the algorithm. The main novel aspects of
this paper are summarized as follows:

1. An elite particle selection mechanism is designed. Based on the power-law distribu-
tion of scale-free network topology, the corresponding community is constructed for each
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particle, and elite particles are selected from the community to participate in the particle
search process.

2. An update strategy with velocity differential is proposed. Two particles are selected
from the neighborhood for differential operation, and then introduced into the velocity
update formula and consider full play to the guiding role of elite particles in the population
learning process.

3. A new adaptive strategy of inertia weight is introduced for achieving a balance
ability to the global exploration and local exploitation within the search process.

The rest of this paper is organized as follows: The standard particle swarm optimiza-
tion algorithm is described in Section 2, as well as scale-free network topology related
knowledge. The details of our proposed SFAPSO algorithm are shown in Section 3, in-
cluding scale-free network topology construction, velocity differential update, and the
improvement of inertia weight adaptive. The experimental results and analysis on several
benchmark functions are described in Section 4, and the conclusion is provided in Section
5.

2. Related Works.

2.1. Particle swarm optimization. Particle swarm optimization (PSO) is a stochas-
tic optimization algorithm based on population search. In this algorithm, each particle
is composed of three parts, including particle velocity vector Xij=(Vi1,Vi2,. . . ,ViD), posi-
tion vector Xij= (Xi1,Xi2,. . . ,XiD), and the historical optimal position Xpbest=(Xpbest1,
Xpbest2,. . . ,XpbestD). In addition, in the iterative process of the algorithm, each particle
also stores the global optimal position of any particle in its neighborhood Xgbest=(Xgbest1,
Xgbest2,. . . ,XgbestD). The update equation of velocity and position of particle i at t + 1 is
as follows:

V t+1
ij = V t

ij + c1 × r1(pbesttij −Xt
ij) + c2 × r2(gbest−Xt

ij) i = 1, 2...N, j = 1, 2...D (1)

Xt+1
ij = Xt

ij + V t+1
ij i = 1, 2...N, j = 1, 2...D (2)

Where, i denotes the index of the particle, j denotes the dimension of the particle,
t represents the current iteration number of the algorithm, c1 and c2 are acceleration
coefficients, r1 and r2 are random numbers with uniform distribution between [0, 1]. In
order to control the influence of the previous velocity of particles on the current velocity,
an inertia weight ω is usually introduced to the velocity in equation (1), as shown in
equation (3):

V t+1
ij = ω × V t

ij + c1 × r1(pbesttij −Xt
ij) + c2 × r2(gbest−Xt

ij) (3)

Where, ω as an important parameter of particle swarm optimization algorithm, ω can
control the exploitation and exploration ability of the algorithm. If the inertia weight is
large, the global exploration ability of the algorithm is strong, and the particle is easy to
find the global optimal solution. If the inertia weight is small, the local search ability of
the algorithm is strong, and the particles are easy to converge.

The basic flow of particle swarm optimization algorithm is shown in FIGURE 1. Firstly,
a population of particles is initialized randomly, including the position and velocity of the
particles. Secondly, the fitness value of the position of each particle is evaluated, and
the historical optimal position of the particle itself and the global optimal position of
the population is obtained by comparison. In the iterative process of the algorithm,
the velocity and position of the particle are updated according to the current velocity
and position of the particle and the historical optimal position of the particle and its
neighborhood to the current position until the termination condition is satisfied.
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Figure 1. Particle swarm optimization algorithm

Although particle swarm optimization algorithm has been developed a lot, there are
still some problems to be solved. For example, make better use of the two kinds of
particle experience: The previous optimal particle position and the global optimal particle
position. Therefore, in this paper, velocity differential strategy and inertia weight adaptive
strategy based on scale-free network topology are proposed, which will be described in
detail in Section 3.

2.2. Scale-Free network topology. Scale-free network topology is very common in
daily life, such as server and client, Internet of things [25], social network [26], aviation
network [27], etc. The most basic property of scale-free network topology model is that a
node with degree k obeys the power-law distribution, and the network obeys the power-
law distribution, i.e., the probability density of nodes in the network obeys the power
function distribution, which is usually expressed by the following equation:

P (k) = k−λ (4)

Where, P (k) denotes the probability distribution of node degree, k denotes the number
of connections, and power exponent λ represents a parameter of network structure.

The biggest advantage of particle swarm optimization algorithm is that it can share
information among particles. As can be seen from FIGURE 2, the elite particles are in
the hub position and have a greater influence on the information interaction within the
population. In comparison the ordinary particles far away from the elite particles have less
influence on the population. FIGURE 2 describes the characteristics of scale-free network
topology: A few nodes (blue nodes) have more degrees, which are called elite nodes, while
most nodes (white nodes) have fewer degrees, which are called ordinary nodes. FIGURE
3 is the function image of equation (4), which can be seen intuitively λ with the increase
of k value, P (k) decreases.
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Figure 2. Scale-free network topology

Figure 3. Power-law distribution function

In 1999, Barabási et al. proposed a scale-free network topology model based on a
preferential attachment mechanism, namely Barabási-Albert (BA) model [18]. The model
usually includes the following two steps: Firstly, select several elite particles to form a
small network. Secondly, the remaining nodes are connected to the network through the
cycle, and the probability of access to the nodes with several heights is high. As can be
seen from FIGURE 4, the node with degree 10 is more attractive to the node i to be
accessed. This paper takes BA model as an example to describe the construction process
of scale-free network topology.

The neighborhood based information interaction constructed by scale-free network
topology can reduce the impact of ordinary particle interaction on the whole popula-
tion, thus speeding up the convergence speed of the population. Therefore, it is very
advantageous to use scale-free network topology to optimize the whole search process of
PSO.
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Figure 4. Scale-free network topology construction process

3. The proposed SFAPSO algorithm.

3.1. Update strategy with velocity differential. Based on the analysis of scale-free
network topology, a velocity differential strategy using scale-free network topology and
differential evolution is proposed. Each particle selects elite particles from the constructed
topological neighborhood be participated in its own velocity update, and consider full play
to the information interaction ability of elite particles. The details of velocity differential
strategy is as follows:

Firstly, the scale-free network topology is constructed using the BA model. The Eu-
clidean distance between each particle in the population and the global optimal particle
is calculated. The nearest 10% particles of the population are selected as elite particles.
The initial network is constructed by full connection. The degree proportion of each par-
ticle is calculated by equation (5). In the iterative process, a roulette selection algorithm
is used to connect the remaining particles into the network. The degree proportion and
cumulative probability equation of particles are as follows:

Pi =
degreei

n∑
j=1

degreej

(5)

Wi =

i∑
j=1

Pj (6)

Where, Pi denotes the proportion of node i degree to all degrees in the network, degree
i is the degree of node i, and Wi represents the probability of accumulation.

After the scale-free network topology is constructed, each particle selects the elite par-
ticle from its neighborhood as its current optimal position. According to the fitness value,
two particles are selected from the neighborhood by the roulette selection algorithm to
participate in the velocity update. Particle fitness ratio and cumulative probability can
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be described as follows:

Qi =
f(xi)∑n
j=1 f(xj)

(7)

Si =
∑i

j=1
Qj (8)

In this paper, we denote an equilibrium factor g to equalize the differential velocity
update and the classical velocity update. After determining the optimal position of each
particle, the equilibrium factor g is used to determine how to update the velocity. The
value of equilibrium factor g will be described in detail in the experimental part, and the
velocity update equation can be described as follows:

V t+1
ij = ωi × V t

ij + c1 × r1(Fpbesttij −Xt
ij) + c2 × r2(gbest−Xt

ij) + α× (FpbesttR1j − FpbesttR2j)(9)

Where, Fpbesttij denotes the elite particles selected from the domain, α is the difference
coefficient, R1 and R2 represent two particles randomly selected from the community.
Details of the velocity differential update strategy using scale-free network topology are
as follows:

Strategy1: Update strategy with velocity differential

1: Initialization: Population size N , network initial node number m0, equilibrium factor g;

2: Calculate and sort the distance between particles and global optimal particles;
3: Select the first m0 elite particles as the initial nodes to form the network;

4: Calculate the degree of each node in the network: Degree = m0-1;
5: For i=m0+1:N

6: Use roulette selection algorithm to connect the particle into the network;

7: Add 1 to the degree of particle i and connected particle;
8: End

9: For i=1:N

10: Find out the index indexFP corresponding to the node connected to each node;
11: Use roulette selection algorithm selects R1 and R2;

12: End

13: For i=1:N
14: Select the particle with the smallest fitness value in the neighborhood as the current optimal position;

15: End

16: For i=1:N
17: if rand>g

18: Execute the improved velocity update equation;
19: else

20: Execute the classical velocity update equation;

21: End
22: End

3.2. Adaptive strategy of inertia weight. In this paper, we use the community based
method to select the elite individuals as the current optimal position in the velocity
differential strategy, i.e., in search process, the particle with larger degree is more likely
to be affected by the elite, and the particle with smaller degree is less likely to be affected
by the elite. Based on the above analysis, we conclude that controlling the inertia weight
of each particle is more suitable than the strategy of linearly decreasing the inertia weight,
which is improved based on the inertia weight adaptive proposed by Liu et al. [4].

Liu et al. [4] introduced the average fitness and minimum fitness of particles to achieve
the ”protection” effect on the optimal particles. The inertia weight calculation equation
is as follows:

ωi(t) =

{
ωmin + (ωmax−ωmin)(fi(t)−fmin(t))

favg(t)−fmin(t) if fi(t) ≤ favg(t)

ωmax if fi(t) > favg(t)
(10)
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Where, ωt(t) denotes the inertia weight of the ith particle of the t generation, ωmin
and ωmax denote the minimum and maximum inertia weight, fi(t) denotes the fitness
value of the ith particle of the t generation, favg(t) represents the average fitness value
of the particle, and fmin(t) is the global optimal fitness value of the particle. In order to
make full use of the experience of elite particles in the community, this paper improves
equation (10). The fitness value of particles is enhanced to the optimal fitness value after
neighborhood selection, and the updated inertia weight calculation equation is expressed
as follows:

ωi(t) =

{
ωmin +

(ωmax−ωmin)(fpbest(t)−fmin(t))
favg(t)−fmin(t) if fpbest(t) ≤ favg(t)

ωmax if fpbest(t) > favg(t)
(11)

Strategy 2: Adaptive strategy of inertia weight

1: Input: ωmax=1.2, ωmin=0.2, favg, fpbest, fgbest
2: Output: ω
3: For i=1:N
4: if fpbest <favg do
5: ωi=ωmin-(ωmax-ωmin)*(fpbest-fgbest)/favg-fgbest;
6: else
7: ωi=ωmax;
8: End
9: End

3.3. SFAPSO Algorithm. Based on the above design of velocity differential strategy
and inertia weight adaptive strategy, a novel adaptive particle swarm optimization algo-
rithm using scale-free network topology.

Algorithm 1: Adaptive particle swarm optimization using scale-free network topology

1: Initialization: Population size: N ,dimension: D, α=0.5, g=0.6;
2: Evaluate particle fitness f(xi), fgbest;
3: While FEs < maxFEs
4: Use Strategy 2 to give each particle inertia weight;
5: Use Strategy 1 to build scale-free network topology and update velocity and location;
6: Evaluate particle fitness;
7: Update global optimal particles;
8: End

The process of the algorithm is described as follows:
Step 1: Initialization population and parameters: N=100, D=30, c1=c2=2.0, α=0.5,

g=0.6.
Step 2: Calculated the fitness value f(xi) and the optimal value fgbest of each particle.
Step 3: Use Eq. (11) to give each particle inertia weight.
Step 4: Constructed the scale-free network topology and determine the optimal position

of each particle.
Step 5: When g > 0.6, use Eq. (9) to update the particle velocity, and use Eq. (2) to

update the position.
Step 6: Calculated the fitness and global optimal fitness of particles.
Step 7: Loop steps 2 through 7 until the number of evaluations equals the maximum

number of evaluations.



Adaptive Particle Swarm Optimization Using Scale-Free Network Topology 509

4. Experimental results. The paper is carried out on a computer with Win 64 bit,
Intel (R) core (TM) i5-6300hq CPU @ 2.30ghz and 8GB ram. Using Matlab r2019a to
carry out the relevant experimental work, and the results are discussed and analyzed. The
experiment is divided into three parts. In the first part, the value of equilibrium factor g
is analyzed. In the second part, the optimal combination of experimental parameters and
SFAPSO algorithm is explored. In the third part, the SFAPSO algorithm is compared with
the other five well-known particle swarm optimization algorithms. In this experiment,
a set of eighteen benchmark functions are used, and all functions information can be
obtained from the website [29]. Where, f1 - f6 are unimodal test functions, and f7 - f18
are multimodal test functions. To improve the efficiency of the experiment, experiment
one and experiment two selected eight benchmark functions (four unimodal test functions
and four multimodal test functions) from the eighteen benchmark functions.The details
of the benchmark functions are shown in TABLE 1.

4.1. Value of equilibrium factor. In order to judge the influence of the value of equi-
librium factor on the experiment and determine its optimal value, the experimental pa-
rameters in this section are N = 100, D = 30, and the maximum number of evaluations
are D * 10000. Each value of equilibrium factor g is calculated 30 times separately, and
the mean value and standard deviation are recorded. Considering that the equilibrium
factor is for equalization velocity differential update and classical velocity update, this
section takes 0.5 as the center value, and g is 0.3, 0.4, 0.5, 0.6 and 0.7. TABLE 2 clearly
shows the value of g when the experimental results are good.

Table 1. Benchmark functions

Test Functions Search Range

f1 Brown function [-1, 4]
f2 Exponential function [-1, 1]
f3 Powell Sum function [-1, 1]
f4 Zakharov function [-5, 10]
f5 Step function [-100, 100]
f6 Rotated hyper-ellipsoid function [-100, 100]
f7 Happy Cat function [-2, 2]
f8 Periodic function [-10, 10]
f9 Quaritic function [-1.28, 1.28]
f10 Xin-She Yang N.2 function [-2π, 2π]
f11 Six Hump Camel bsck function [-5, 5]
f12 Hartmann function [0, 1]
f13 Norwegian function [-1.1, 1.1]
f14 Branin function [-5, 15]
f15 Easom function [-100, 100]
f16 Goldstein and Price function [-2, 2]
f17 Shubert function function [-10, 10]
f18 Michalewicz function [0, π]

From the ranking of the experimental results in TABLE 2, it can be seen that each
value can perform well in f1 - f3, the performance of g value 0.5 in f8 function is better
than 0.6, and the performance of g value 0.6 in f4 and f5 function is better than 0.5.
From the mean ranking, the experimental results of g values 0.5 and 0.6 are similar.
Still, the standard deviation ranking of 0.6 is better than 0.5, which indicates that the
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Table 2. Equilibrium factor

0.3 0.4 0.5 0.6 0.7

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Rank 1 1 1 1 1 1 1 1 1 1
f2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Rank 1 1 1 1 1 1 1 1 1 1

f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 1 1 1 1 1 1 1 1 1 1

f4 3.69E-03 5.89E-03 2.07E-03 2.29E-03 1.73E-03 1.78E-03 1.68E-03 1.95E-03 1.27E-02 1.71E-02

Rank 4 4 3 3 2 1 1 2 5 5
f5 1.96E-02 2.29E-02 1.74E-02 1.68E-02 1.29E-02 2.07E-02 1.26E-02 1.44E-02 2.35E-02 1.88E-02

Rank 4 5 3 2 2 4 1 1 5 3

f6 1.00E+00 1.79E-03 1.00E+00 1.37E-03 1.00E+00 3.87E-04 1.00E+00 7.52E-04 1.00E+00 1.72E-03
Rank 1 5 1 4 1 1 1 2 1 3

f7 5.64E-04 4.20E-04 4.92E-04 3.35E-04 7.48E-04 5.09E-04 5.95E-04 4.09E-04 1.80E-03 1.60E-03

Rank 2 3 1 1 4 4 3 2 5 5
f8 4.51E-12 1.06E-12 4.54E-12 8.30E-13 4.48E-12 1.02E-12 4.61E-12 1.08E-12 4.79E-12 1.46E-12

Rank 2 2 3 1 1 3 4 4 5 5

Average rank 2 2.75 1.75 1.75 1.63 2 1.62 1.75 3 3

Final rank 4 2 3 1 5

evolution process of particle swarm is more stable when the g value is 0.6. On the whole,
the experimental effect is the best when the equalization factor g is 0.6, so the equilibrium
factor g is 0.6 in SFAPSO algorithm.

4.2. Optimal strategy combination. In this paper, eight benchmark functions are
used to test five different combinations of the SFAPSO algorithm under the condition
that the initial population size is 100 and the problem dimension is 30. The combination
of the SFAPSO algorithm is based on the construction of scale-free network topology.
Combination one uses classical velocity update equation, combination two uses velocity
differential update strategy, combination three uses inertia weight adaptive and classical
velocity update equation, and combination four uses inertia weight adaptive and velocity
differential update strategy, combination five is a velocity differential update strategy
with adaptive inertia weight and introducing equilibrium factor g. TABLE 3 shows the
selected benchmark function and value range, and TABLE 4 shows the parameter details
of each combination.

Table 3. Benchmark functions

Test Functions Search Range

f1 Brown function [-1, 4]
f2 Exponential function [-1, 1]
f3 Powell Sum function [-1, 1]
f4 Zakharov function [-5, 10]
f5 Happy Cat function [-2, 2]
f6 Periodic function [-10, 10]
f7 Quaritic function [-1.28, 1.28]
f8 Xin-She Yang N.2 function [-2π, 2π]

TABLE 5 shows the mean and standard deviation of each combination running 30
times independently. TABLE 5 shows that combination three, combination four and
combination five can get the optimal value on f1 - f3. Combination one can get the
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Table 4. Different combination parameter settings

Parameter Settings

1 ω=0.85, c1=c2=2.0
2 ω=0.85, c1=c2=2.0, α=0.5
3 ωmax=1.2, ωmin=0.2, c1=c2=2.0
4 ωmax=1.2, ωmin=0.2, c1=c2=2.0, α=0.5
5 ωmax=1.2, ωmin=0.2, c1=c2=2.0, α=0.5, g=0.6

Table 5. Strategy mix comparison

1 2 3 4 5

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

f1 6.50E+00 4.60E+00 8.90E+00 1.19E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 1.31E-02 7.18E-02 3.70E-05 9.04E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 1.09E-09 3.96E-09 5.85E-10 1.76E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f4 1.40E+01 2.51E+01 7.18E+00 1.57E+01 5.98E-02 2.05E-02 6.40E-03 7.81E-03 1.68E-03 1.95E-03

f5 1.40E-01 9.31E-02 1.22E-01 6.38E-02 6.93E-02 1.84E-02 2.31E-02 1.26E-02 1.26E-02 1.44E-02

f6 1.07E+00 1.49E-01 1.22E+00 3.19E-01 1.01E+00 2.04E-02 1.00E+00 3.28E-04 1.00E+00 7.52E-04
f7 5.56E-01 2.94E+00 4.81E-01 1.42E+00 1.02E-03 8.85E-04 2.33E-03 1.77E-03 5.95E-04 4.09E-04

f8 4.45E-12 9.10E-13 4.95E-12 2.75E-12 5.30E-12 4.91E-12 5.06E-12 1.35E-12 4.61E-12 1.08E-12

better results than others on f8. the experimental results of combination five on f4 - f7
are better than those of other combinations. Through the overall experimental results,
combination five has a significant effect in the experiment, i.e., the SFAPSO algorithm
proposed in this paper.

4.3. Comparison of algorithm results. To illustrate the effectiveness of the SFAPSO
algorithm, a set of eighteen benchmark functions are tested in 30 and 50-dimensions
respectively, and compared with five well-known PSO variants. Where includes SPSO
[30], CLPSO [31], BLPSO [32], SLPSO [33], ACPSO [34]. To ensure the fairness of
algorithm comparison, the population size N of each algorithm is set to 100, D is 30 and
50-dimensions respectively, and the maximum number of evaluations are D * 10000. The
rest parameters are set according to the corresponding paper. To avoid the influence of
error, each algorithm runs 30 times independently, and records the optimal value, average
value, and standard deviation. TABLE 6 clearly describes the parameter settings of each
algorithm, in which, in the SFAPSO algorithm, ωmax is 1.2, ωmin is 0.2, c1 and c2 are 2.0,
The value of α is 0.5 and g is 0.6.

Table 6. Comparison algorithm parameter settings

Algorithm Parameter Settings

SPSO ω=0.85, c1=c2=2.05
CLPSO ω=0.9-0.2, c=1.49445, gapm=5, Vmax=0.2*range
BLPSO ω=0.9-0.2, c=1.49445, I=E=1, Vmax=0.2*range
SLPSO M=100, m=M+floor(d/10), c3=d/M*0.01
ACPSO ω=0.9-0.4, c1=c2=1.49445, swarmNum=3, alpha=0.1, beta=0.1, Vmax=0.2*range
SFAPSO ωmax=1.2, ωmin=0.2, c1=c2=2.0, α=0.5, g=0.6

From TABLE 7, i.e., 30-dimensional data, it can be concluded that SFAPSO has good
exploitation ability in f1, f2 , and f3 functions, SLPSO, ACPSO, and SFAPSO can
converge to the optimal values in f5, f11, and f17 functions, and ACPSO has better
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Table 7. Results of comparison algorithms on benchmark functions (30-D)

SPSO BLPSO CLPSO SLPSO ACPSO SFAPSO

Optimal 4.85E+01 8.01E-64 4.77E+01 2.79E-71 3.37E-06 0.00E+00

f1 Mean 1.09E+02 1.02E-62 1.24E+02 1.21E-69 8.43E-06 0.00E+00
Std. 2.43E+01 3.13E-62 4.59E+01 1.67E-69 4.46E-06 0.00E+00

Rank 5 3 6 2 4 1
Optimal 7.71E-01 0.00E+00 3.77E-01 0.00E+00 1.02E-07 0.00E+00

f2 Mean 8.24E-01 0.00E+00 5.27E-01 7.77E-17 3.76E-07 0.00E+00

Std. 2.31E-02 0.00E+00 4.48E-02 5.17E-17 2.05E-07 0.00E+00
Rank 6 1 5 3 4 1

Optimal 8.50E-03 2.20E-117 2.41E-04 1.82E-175 7.52E-33 0.00E+00

f3 Mean 3.82E-02 3.07E-112 2.08E-03 6.52E-158 3.49E-26 0.00E+00
Std. 1.52E-02 1.39E-111 9.39E-04 2.41E-157 1.17E-25 0.00E+00

Rank 6 3 5 2 4 1

Optimal 2.73E+02 1.17E-05 1.38E+02 5.39E+00 4.23E-10 1.69E-05
f4 Mean 3.33E+02 3.64E-05 3.22E+02 1.08E+01 1.27E-09 1.68E-03

Std. 3.49E+01 2.46E-05 6.14E+01 4.65E+00 6.45E-10 1.95E-03

Rank 6 2 5 4 1 3
Optimal 2.74E+04 6.91E+03 6.17E+03 0.00E+00 0.00E+00 0.00E+00

f5 Mean 3.46E+04 9.06E+03 1.53E+04 0.00E+00 0.00E+00 0.00E+00
Std. 2.80E+03 1.12E+03 2.82E+03 0.00E+00 0.00E+00 0.00E+00

Rank 6 4 5 1 1 1

Optimal 2.83E+04 1.00E+04 1.89E+04 7.95E-06 6.11E-04 8.05E-05
f6 Mean 3.86E+04 1.41E+04 2.92E+04 3.64E-04 1.95E-03 1.94E-03

Std. 4.56E+03 2.07E+03 6.42E+03 3.54E-04 1.11E-03 1.63E-03

Rank 6 4 5 1 3 2
Optimal 3.12E-01 6.67E-03 3.68E-01 3.74E-02 7.26E-04 7.77E-16

f7 Mean 4.86E-01 8.76E-03 5.38E-01 6.02E-02 1.40E-03 1.26E-02

Std. 6.39E-02 1.40E-03 9.11E-02 1.33E-02 5.17E-04 1.44E-02
Rank 5 2 6 4 1 3

Optimal 5.59E+00 1.16E+00 5.17E+00 1.00E+00 1.02E+00 1.00E+00

f8 Mean 6.90E+00 1.24E+00 6.53E+00 1.00E+00 1.03E+00 1.00E+00
Std. 4.57E-01 4.04E-02 6.12E-01 1.60E-16 9.80E-03 7.52E-04

Rank 6 4 5 1 3 1

Optimal 1.87E+01 2.29E-03 3.41E+00 5.05E-03 9.44E-02 3.83E-05
f9 Mean 3.17E+01 4.22E-03 7.27E+00 1.01E-02 4.38E-01 5.95E-04

Std. 4.91E+00 1.09E-03 1.68E+00 2.53E-03 2.88E-01 4.09E-04
Rank 6 2 5 3 4 1

Optimal 3.32E-09 3.84E-12 1.41E-08 5.34E-12 3.53E-12 3.51E-12

f10 Mean 1.76E-07 4.29E-12 2.72E-07 8.50E-12 3.62E-12 4.61E-12
Std. 1.61E-07 2.22E-13 3.38E-07 1.40E-12 1.11E-13 1.08E-12

Rank 5 2 6 4 1 3

Optimal 8.51E-06 1.33E-04 1.11E-15 0.00E+00 0.00E+00 0.00E+00
f11 Mean 4.09E-04 2.87E-03 8.06E-09 0.00E+00 0.00E+00 0.00E+00

Std. 3.00E-04 2.38E-03 1.50E-08 0.00E+00 0.00E+00 0.00E+00

Rank 5 6 4 1 1 1
Optimal 1.56E-04 6.93E-04 2.23E-07 2.13E-07 2.13E-07 2.13E-07

f12 Mean 1.25E-03 8.48E-03 6.51E-06 2.13E-07 2.58E-02 2.13E-07

Std. 7.80E-04 6.54E-03 1.23E-05 0.00E+00 1.41E-01 0.00E+00
Rank 4 5 3 1 6 1

Optimal 6.72E-01 2.94E-01 3.37E-01 2.15E-01 8.28E-02 8.30E-03
f13 Mean 7.63E-01 3.70E-01 5.01E-01 2.23E-01 1.31E-01 5.61E-02

Std. 3.79E-02 3.91E-02 7.86E-02 7.97E-03 2.01E-02 6.83E-02
Rank 6 4 5 3 2 1

Optimal 1.23E-05 3.67E-05 3.58E-07 3.58E-07 3.58E-07 3.58E-07

f14 Mean 4.66E-04 1.01E-02 2.24E-06 3.58E-07 3.58E-07 3.58E-07

Std. 4.06E-04 1.97E-02 8.76E-06 0.00E+00 0.00E+00 0.00E+00
Rank 5 6 4 1 1 1

Optimal 5.88E-04 2.73E-02 5.86E-11 0.00E+00 0.00E+00 0.00E+00
f15 Mean 9.23E-02 2.82E-01 2.96E-01 3.33E-02 0.00E+00 0.00E+00

Std. 8.85E-02 2.16E-01 4.42E-01 1.83E-01 0.00E+00 0.00E+00

Rank 4 5 6 3 1 1

Optimal 5.76E-04 5.09E-03 1.00E+00 0.00E+00 0.00E+00 0.00E+00
f16 Mean 7.54E-03 9.12E-02 2.50E-06 0.00E+00 2.70E+00 0.00E+00

Std. 6.04E-03 1.12E-01 7.17E-06 0.00E+00 1.48E+01 0.00E+00
Rank 4 5 3 1 6 1
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Optimal 4.13E-03 1.75E-01 3.73E-10 0.00E+00 0.00E+00 0.00E+00
f17 Mean 8.03E-02 3.33E+00 2.65E-04 0.00E+00 0.00E+00 0.00E+00

Std. 7.09E-02 2.39E+00 9.73E-04 0.00E+00 0.00E+00 0.00E+00

Rank 5 6 4 1 1 1
Optimal 1.00E-03 1.52E-03 6.22E-05 1.35E-06 0.00E+00 0.00E+00

f18 Mean 6.79E-02 6.22E-02 1.57E-02 2.32E-05 5.41E-14 0.00E+00

Std. 5.70E-02 6.65E-02 1.51E-02 2.51E-05 1.06E-13 0.00E+00
Rank 6 5 4 3 2 1

Average Rank 5.33 3.83 4.78 2.17 2.56 1.39

Final Rank 6 4 5 2 3 1

Table 8. Results of comparison algorithms on benchmark functions (50-D)

SPSO BLPSO CLPSO SLPSO ACPSO SFAPSO

Optimal 3.89E+02 3.42E+02 2.14E+02 8.10E-81 2.28E-03 0.00E+00

f1 Mean 1.16E+03 8.91E+02 9.42E+02 2.28E-79 1.03E-02 0.00E+00
Std. 8.41E+02 4.20E+02 8.60E+02 4.25E-79 3.59E-03 0.00E+00

Rank 6 4 5 2 3 1

Optimal 9.59E-01 5.14E-01 7.41E-01 1.11E-16 2.00E-04 0.00E+00
f2 Mean 9.77E-01 6.09E-01 8.01E-01 1.11E-16 4.42E-04 0.00E+00

Std. 5.18E-03 3.82E-02 3.38E-02 0.00E+00 1.34E-04 0.00E+00

Rank 6 4 5 2 3 1
Optimal 1.24E-02 1.42E-04 2.60E-04 1.24E-194 8.13E-28 0.00E+00

f3 Mean 6.27E-02 7.41E-04 2.57E-03 4.03E-176 1.72E-24 0.00E+00
Std. 2.59E-02 4.69E-04 2.25E-03 0.00E+00 3.93E-24 0.00E+00

Rank 6 4 5 2 3 1

Optimal 6.39E+02 7.15E+02 4.96E+02 1.66E+02 1.03E-05 1.41E-03
f4 Mean 1.09E+03 1.14E+09 7.42E+02 2.06E+02 3.31E-05 1.29E-02

Std. 1.11E+03 2.59E+09 1.85E+02 2.44E+01 1.54E-05 8.98E-03

Rank 5 6 4 3 1 2
Optimal 5.76E+04 1.52E+04 2.49E+04 0.00E+00 5.00E+00 0.00E+00

f5 Mean 7.44E+04 1.86E+04 3.32E+04 3.33E-02 1.01E+01 6.67E-01

Std. 6.12E+03 1.96E+03 3.53E+03 1.83E-01 2.83E+00 8.44E-01
Rank 6 4 5 1 3 2

Optimal 7.49E+04 2.39E+04 5.46E+04 3.62E-01 2.23E+00 1.12E-01

f6 Mean 1.03E+05 3.67E+04 8.10E+04 1.73E+02 7.03E+00 3.74E-01
Std. 1.19E+04 7.60E+03 1.54E+04 9.12E+02 3.03E+00 1.46E-01

Rank 6 4 5 3 2 1
Optimal 4.92E-01 5.87E-01 5.31E-01 1.11E-01 4.28E-03 3.13E-03

f7 Mean 6.46E-01 8.68E-01 6.51E-01 1.43E-01 6.37E-03 2.97E-02
Std. 5.95E-02 1.21E-01 7.27E-02 1.88E-02 1.65E-03 1.67E-02
Rank 4 6 5 3 1 2

Optimal 1.28E+01 1.43E+01 1.16E+01 1.00E+00 1.33E+00 1.00E+00

f8 Mean 1.39E+01 1.64E+01 1.31E+01 1.00E+00 1.56E+00 1.00E+00
Std. 5.46E-01 7.26E-01 8.37E-01 0.00E+00 8.31E-02 4.46E-03

Rank 5 6 4 1 3 1

Optimal 1.15E+02 1.15E+00 2.25E+01 1.56E-02 2.69E-01 3.51E-05
f9 Mean 1.51E+02 4.16E+00 3.38E+01 2.56E-02 6.58E-01 4.62E-04

Std. 1.79E+01 1.86E+00 6.22E+00 5.28E-03 3.21E-01 4.36E-04
Rank 6 4 5 2 3 1

Optimal 4.63E-13 3.97E-11 1.14E-12 2.63E-20 3.42E-20 1.21E-20

f10 Mean 2.41E-11 4.27E-10 9.26E-11 3.36E-20 5.55E-20 1.49E-20

Std. 3.53E-11 4.18E-10 8.77E-11 4.09E-21 1.27E-20 2.66E-21
Rank 4 6 5 2 3 1

Optimal 4.18E-06 2.14E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f11 Mean 3.23E-04 1.50E-03 2.92E-11 0.00E+00 0.00E+00 0.00E+00

Std. 3.34E-04 1.74E-03 6.15E-11 0.00E+00 0.00E+00 0.00E+00

Rank 5 6 4 1 1 1
Optimal 2.90E-04 4.10E-04 2.13E-07 2.13E-07 2.13E-07 2.13E-07

f12 Mean 1.10E-03 7.52E-03 4.43E-07 2.13E-07 9.54E-02 2.13E-07

Std. 6.39E-04 6.87E-03 7.80E-07 0.00E+00 5.23E-01 0.00E+00
Rank 4 5 3 1 6 1

Optimal 9.43E-01 5.01E-01 7.22E-01 3.25E-01 2.87E-01 2.47E-02

f13 Mean 9.83E-01 5.87E-01 8.45E-01 3.42E-01 3.19E-01 2.32E-01
Std. 1.14E-02 5.36E-02 5.97E-02 7.25E-03 1.95E-02 1.39E-01

Rank 6 4 5 3 2 1
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Optimal 2.24E-05 5.05E-05 3.58E-07 3.58E-07 3.58E-07 3.58E-07
f14 Mean 3.54E-04 4.24E-03 4.76E-07 3.58E-07 3.58E-07 3.58E-07

Std. 3.04E-04 5.05E-03 4.90E-07 0.00E+00 0.00E+00 0.00E+00

Rank 5 6 4 1 1 1
Optimal 1.72E-03 2.34E-02 3.29E-13 0.00E+00 0.00E+00 0.00E+00

f15 Mean 7.30E-02 2.29E-01 2.19E-01 6.67E-02 0.00E+00 0.00E+00

Std. 6.08E-02 2.19E-01 4.08E-01 2.54E-01 0.00E+00 0.00E+00
Rank 4 6 5 3 1 1

Optimal 1.45E-04 8.90E-04 1.40E-12 0.00E+00 0.00E+00 0.00E+00
f16 Mean 9.94E-03 2.90E-02 6.32E-09 0.00E+00 2.70E+00 0.00E+00

Std. 1.17E-02 3.08E-02 1.30E-08 0.00E+00 1.48E+01 0.00E+00

Rank 4 5 3 1 6 1
Optimal 1.45E-03 1.77E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f17 Mean 7.83E-02 1.47E+00 1.53E-06 0.00E+00 0.00E+00 0.00E+00

Std. 7.13E-02 1.33E+00 7.71E-06 0.00E+00 0.00E+00 0.00E+00
Rank 5 6 4 1 1 1

Optimal 2.15E-06 4.65E-05 3.71E-05 4.05E-07 7.11E-15 0.00E+00

f18 Mean 1.62E-04 7.02E-04 1.24E-03 1.25E-05 1.43E-12 2.08E-11
Std. 1.34E-04 6.13E-04 1.08E-03 1.19E-05 1.97E-12 1.14E-10

Rank 4 5 6 3 1 2

Average Rank 5.11 5.06 4.56 1.94 2.33 1.22

Final Rank 6 5 4 2 3 1

convergence effect in f4 function than other algorithms, because the optimal value of
f4 function, i.e., zakharovfcn function tend to be smooth, The improved inertia weight
adaptive strategy used in SFAPSO algorithm gives each particle a specific weight, which
will lead to the elite particles search stagnation when they exploit near the optimal value.
The convergence of SFAPSO on the f6 function is slightly worse than that of SLPSO,
but it is better than the other four comparison algorithms. Although the mean value of
the f7 function is not better than other algorithms, the minimum value is better, from
which we can see that the exploitation ability of SFAPSO on the f7 function is effective.
The convergence of ACPSO and SFAPSO on the f10 function is almost the same, which
shows excellent competitiveness.

By analyzing the 50-dimensional data in TABLE 8, we can see that SFAPSO still has
excellent exploitation ability in f1, f2, and f3 functions, which can show that SFAPSO
still has remarkable exploitation ability in the high-dimensional space of unimodal func-
tion. SFAPSO and SLPSO can converge to the optimal value on f5 and f8 functions,
but their stability is slightly worse than SLPSO. The main reason is that the learning
objectives of social learning mechanism proposed by SLPSO is the whole particle swarm.
Hence, their stability is better on some functions, while SFAPSO convergence accuracy
and stability on other functions are better than the other five comparative algorithms.The
functions of f11, f15, f16, and f17 functions can converge to the actual optimal value
regardless of the minimum value or the mean value, which shows that SFAPSO algorithm
has a certain competitiveness in the accuracy of solving multimodal problems. At the
same time, the standard deviation shows that SFAPSO algorithm has superior stability.

It is easy to get that SFAPSO, SLPSO and ACPSO converge to the optimal value on
the f8, f11, and f17 multimodal functions by comparing the 30 and 50-dimensional data.
But SLPSO and ACPSO are not converging to the optimal value in the f12, f15, and f18
multimodal functions, which shows that SFAPSO has good performance in multimodal
optimization. The average and final ranking of the SFAPSO algorithm in 30 and 50-
dimensions are the first. The final rank shows that the SFAPSO algorithm has good
competitiveness in convergence accuracy and stability.

In addition, to illustrate the stability of the algorithm, the box graph is used to an-
alyze the results of eighteen benchmark functions running independently from 30 and
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Figure 5. The box graphs of comparison algorithms (30-D)

Figure 6. The box graphs of comparison algorithms (50-D)

50-dimensions 30 times. The results are shown in FIGURE 5 and FIGURE 6. The upper
horizontal line of the rectangular box in the figure is the upper quartile of the data. The
lower horizontal line is the lower quartile, and the red horizontal line in the rectangle
represents the median. If there is only one horizontal line, the result of the algorithm is
the exavt 30 times. In the f7 function, i.e., Happy cat function, it is slightly worse than
ACPSO, because there are many minimum points near its optimal value, so it still can
not play the advantages of SFAPSO. Still, it is relatively stable in other functions, which
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indicates that SFAPSO effectively balances the exploration and exploitation capabilities
while ensuring the accuracy. Combined with the ranking of 30 and 50-dimensions and
the stability analysis of the box graph, it can be concluded that SFAPSO is better than
other algorithms on the whole and shows good performance.

5. Conclusions. In order to solve the problem that particle swarm optimization (PSO)
algorithm falls into local optimum when solving some problems, an adaptive PSO al-
gorithm using scale-free network topology is proposed. In the SFAPSO algorithm, the
update strategy with velocity differential is designed based on the neighborhood relation-
ship, which takes advantage of the power-law distribution of scale-free network topology
and consider full play to the advantage of elite particle information sharing. In addition,
by introducing an improved inertia weight adaptive strategy, each particle is given a spe-
cific inertia weight to balance the global exploration and local exploitation ability. The
SFAPSO algorithm proposed in this paper is compared with five well-known PSO vari-
ants. The experimental results show that the SFAPSO algorithm has efficient robustness
which competitive solutions can be obtained.

However, the SFAPSO algorithm can’t get a satisfactory solution effectively in solving
some problems with more local extremum. Therefore, the subsequent work will focus on
diversity exploitation to further improve the global search ability of the algorithm.

6. Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China (Grant Nos. 62066019 and 61903089), the JiangXi Provincial Nat-
ural Science Foundation (Grant Nos. 20202BABL202020 and 20202BAB202014), the
National Key Research and Development Program (Grant Nos. 2020YFB1713700 and
2020YFB1713705).

REFERENCES

[1] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, Mhs95 Sixth International
Symposium on Micro Machine & Human Science IEEE, vol. 1, pp. 39-43. 2002.

[2] Z. Liu, T. Nishi, Multipopulation ensemble particle swarm optimizer for engineering design problems,
Mathematical Problems in Engineering, vol. 2020, 1450985, 2020.

[3] El. Sehiemy, A. Ragab, F. Selim, B. Bentouati, M. A. Abido, A novel multi-objective hybrid particle
swarm and salp optimization algorithm for technical-economical-environmental operation in power
systems, Energy, vol. 193, 116817, 2020.

[4] S. Tian, Y. Li, Y. Kang, J. Xia, Multi-robot path planning in wireless sensor networks based on
jump mechanism PSO and safety gap obstacle avoidance, Future Generation Computer Systems, vol.
118. pp. 37-47, 2020.

[5] X. C. Pu, J. J. Li, Y. Zhang, An improved PSO algorithm for robot multi-goal path planning,
International Journal of Science, vol. 4, no. 3, 2017.

[6] Y. Shi, R. Eberhart, A modified particle swarm optimizer, IEEE World Congress on Computational
Intelligence, pp. 69-73, 1998.

[7] Y. Shi, R. Eberhart, Empirical study of particle swarm optimization, Congress on Evolutionary
Computation-CEC99, vol. 3, pp. 1945–50, 1999.

[8] B. Liu, L. Wang, Y. H. Jin, F. Tang, D. X. Huang, Improved particle swarm optimization combined
with chaos, Solitons and Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[9] M. Tanweer, S. Suresh, N. Sundararajan, Self regulating particle swarm optimization algorithm,
Information Sciences, vol. 294, pp. 182–202, 2015.

[10] A. Ratnaweera, S. Halgamuge, H. Watson, Self-organizing hierarchical particle swarm optimizer with
time-varying acceleration coefficients IEEE Transactions on Evolutionary Computation, vol. 8, pp.
240–255, 2004.

[11] A. P. Piotrowskia, J. J. Napiorkowskia, A. E. Piotrowskab, Population size in particle swarm opti-
mization, Swarm and Evolutionary Computation, vol. 58, 100718, 2020.

[12] G. Xu, An adaptive parameter tuning of particle swarm optimization algorithm, Applied Mathematics
and Computation, vol. 219, no. 9, pp. 4560-4569, 2013.



Adaptive Particle Swarm Optimization Using Scale-Free Network Topology 517

[13] Z. Zhou, Y. H. Shi , Inertia weight adaption in particle swarm optimization algorithm, Lecture Notes
in Computer Science, vol. 6728, no. 1, pp. 71-79, 2011.

[14] Z. Zhan, J. Zhang, Y. Li, H. S. Chung, Adaptive particle swarm optimization, IEEE Transactions
on Systems, Man, Cybern. Part-B, vol. 39, no. 6, pp. 1362–1381, 2009.

[15] A. Agrawal, S. Tripathi, Particle swarm optimization with probabilistic inertia weight, Advances in
Intelligent Systems and Computing, vol. 741, pp. 239-248, 2019.

[16] L. Kang, R. S. Chen, N. Xiong, Y. C. Chen, Y. X. Hu, C. M. Chen, Selecting hyper-parameters of
gaussian process regression based on non-inertial particle swarm optimization in Internet of things,
IEEE Access, vol. 7, pp. 59504-59513, 2019.

[17] J. M. T. Wu, G. Srivastava, J. C. W. Lin, Q. Teng, A multi-threshold ant colony system-based
sanitization model in shared medical environments, ACM Transactions on Internet Technology, vol.
21, no. 49, pp. 1-26, 2021.

[18] W. Li, X. Meng, Y. Huang, Z. Fu, Multipopulation cooperative particle swarm optimization with a
mixed mutation strategy, Information Sciences, vol. 529, pp. 179-196, 2020.

[19] A. B. Meng, Z. Li, H. Yin, S. Z. Chen, Z. Z. Guo, Accelerating particle swarm optimization using
crisscross search, Information Sciences, vol. 329. pp. 52-72, 2016.

[20] E. K. Wang, C. M. Chen, S. M. Yiu, MM Hassan, M. Alrubaian, G. Fortino, Incentive evolutionary
game model for opportunistic social networks, Future Generation Computer Systems, vol. 102, pp.
14-29, 2020.

[21] J. M. T. Wu, G. Srivastava, S. Tayeb, J. C. W. Lin, A PSO-based sanitization process with multi-
thresholds model, Pattern Recognition. ICPR International Workshops and Challenges: Virtual
Event, 2021.

[22] Q. Y. Yang, S. C. Chu, Pan, J. Shyang, C. M. Chen, Sine cosine algorithm with
multigroup and multistrategy for solving CVRP, Mathematical Problems in Engineering,
https://doi.org/10.1155/2020/8184254, 2020.

[23] F. Q. Zhang, T. Y. Wu, Y. Wang, R. Xiong, G. Y. Ding, P. Mei, L. Y. Liu, Application of quantum
genetic optimization of LVQ neural network in smart city traffic network prediction, IEEE Access,
vol. 8, pp. 104555-104564, 2020.

[24] L. L. Kang, R. S. Chen, Y. C. Chen, C. C. Wang, X. G. Li, T. Y. Wu, Using cache optimization
method to reduce network traffic in communication systems based on cloud computing, IEEE Access,
vol. 7, no. 1, pp. 124397-124409, 2019.

[25] D. Chemodanova, F. Espositob, P. Calyama, A. Sukhovcd, REBATE: a epulsive-based traffic en-
gineering protocol for dynamic scale-free networks, Future Generation Computer Systems, vol. 108,
pp. 624-635, 2020.

[26] D. Liu, V. Fodor, L. K. Rasmussen, Will scale-free popularity develop scale-free geo-social networks?,
IEEE Transactions on Network Science and Engineering, vol. 6, no. 3, pp. 587-598, 2019.

[27] H. Wen, X. P. Fan; H. F. Zhang, A. H. Chen, Research on scale-free network congestion control,
Journal of Chinese Computer Systems, vol. 34, no. 11, pp. 2482-2486, 2013.

[28] A. L. Barabási, R. Albert, Emergence of scaling in random networks, science, vol. 286, no. 15439,
pp. 509-512, 1999.

[29] http://www.sfu.ca/ ssurjano/optimization.html.
[30] M. Clerc, Multipopulation cooperative particle swarm optimization with a mixed mutation strategy,

Standard Particle Swarm Optimisation Available, vol. 529, pp. 179-196, 2011.
[31] J. J. Liang, A. Qin, P. N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer

for global optimization of multimodal functions, IEEE Transactions on Evolutionary Computation,
vol. 10, no. 3, pp. 281-295, 2006.

[32] X. Chen, H. Tianfield, C. Mei, W. Du, G. Liu, Biogeography-based learning particle swarm opti-
mization, Soft Computing, vol. 21, no. 24, pp. 7519-7541, 2017.

[33] R. Cheng, Y. Jin, A social learning particle swarm optimization algorithm for scalable optimization,
Information Sciences, vol. 291, pp. 43-60, 2015.

[34] H. Mohammad, R. M. Mohammad, M. E. Mohammad, Adaptive cooperative particle swarm opti-
mizer, Applied Intelligence, vol. 39, pp. 397-420, 2013.


