
Journal of Network Intelligence ©2022 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 7, Number 1, February 2022

Binary Equilibrium Optimizer Algorithm

Pei Hu

College of Computer Science and Engineering
Shandong University of Science and Technology

No.579 Qianwan’gang Road, Qingdao, Shandong, 266590, China
School of Computer and Software
Nanyang Institute of Technology

No.80 Changjiang Road, Nanyang, Henan, 473004, China
huxiaopei163@163.com

Shu-Chuan Chu

College of Computer Science and Engineering
Shandong University of Science and Technology

No.579 Qianwan’gang Road, Qingdao, Shandong, 266590, China
College of Science and Engineering

Flinders University
Sturt Rd, Bedford Park SA 5042, Australia

scchu0803@gmail.com

Václav Snášel

Department of Computer Science
VŠB—Technical University of Ostrava

17.listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
vaclav.snasel@vsb.cz

Jeng-Shyang Pan*

College of Computer Science and Engineering
Shandong University of Science and Technology

No.579 Qianwan’gang Road, Qingdao, Shandong, 266590, China
Department of Information Management

Chaoyang University of Technology
No.168 Jifeng E. Rd., Wufeng District, Taichung, 413310, Taiwan

*Corresponding Author, jengshyangpan@gmail.com

Received March 2021; revised September 2021

Abstract. Equilibrium optimizer (EO) is a new proposed meta-heuristic algorithm by
utilizing the mass balance model of the control volume. In order to solve the binary appli-
cations, this paper proposes a binary version of equilibrium optimizer (BEO). BEO takes
advantage of the structure of EO, only modifying the equations of equilibrium concentra-
tion and position updating. Through the benchmark functions and Wilcoxon’s rank sum
test, it compares BEO with binary bat algorithm, binary differential evolution, binary
grey wolf optimizer, binary particle swarm optimization, and a binary hybrid algorithm
of particle swarm optimization and gravitational search algorithm. BEO shows excep-
tional performance in the solving quality, time complexity and convergence. Simulation
results prove that BEO acquires the least classification errors while having a small num-
ber of features in the KNN.
Keywords: Equilibrium optimizer; Binary; Feature selection; KNN

45

46 P. Hu, S.C. Chu, V. Snášel and J.S. Pan

1. Introduction. With the development of information technology and the growth of
sensors, people have produced a large number of data [1–4]. But the data does not provide
sufficient knowledge, and even noise data weakens the decision-making ability [5–7]. The
dimension reduction is one of the most basic preprocessing methods in data mining [8–10].

Feature construction transforms the data set from high dimensional space to low space,
which is more suitable for the learning process [11, 12]. However, it changes the struc-
ture of features and they are not easily explained [13, 14]. Feature selection chooses a
feature subset from the original features and discards the features that are harmful to the
subsequent learning process [15–17].

Feature selection contains filter, wrapper and embedded approaches [18]. The filter
method is based on the statistical information of features and does not involve a specific
learning algorithm. Hence, it has efficient and fast. The wrapper adopts a given algorithm
to the feature subset and its performance is better than filter [19,20].

Since the main goal of feature selection is to maximize the classification accuracy while
minimizing the number of selected features, it is regarded as an optimization task [21,22].
If the original data set has n features, then 2n− 1 subsets are generated. It is impractical
when n is very large [23]. Meta-heuristics have the powerful abilities of global search and
local search [24–27], and they contain evolutionary computation, swarm intelligence and
algorithms based on physical phenomena [28–31].

Neggaz et al. used sine function to update the follower’s position in sine cosine algo-
rithm (SSA) to improve the exploration stage and avoid local stagnation [32]. O’Neill
et al. claimed three initialization strategies of particle swarm optimization (PSO) and
new update mechanisms of personal and global optimal solutions to implement feature
selection [33]. Mafarja et al. brought a hybrid meta-heuristic method to overcome the
shortcomings of immature convergence and stagnation [34]. Arora et al. introduced a bi-
nary butterfly optimization algorithm (BOA) and applied it to the classification problem
in wrapper mode [35]. Faris et al. utilized eight transfer functions to convert continuous
salp swarm algorithm (SSA) to binary versions and a crossover operator to promote the
exploration of the algorithm [36]. Hu et al. improved the binary gray wolf optimizer
(GWO) and proposed new transfer functions and position equation [37].

Equilibrium optimizer (EO) is a novel meta-heuristic [38]. It has shown excellent per-
formance in the optimizations of engineering and parameter, and image processing [39].
This paper proposes a binary version of EO and adopts it in the feature selection.

The organization of this paper is as follows: Section 2 describes the concise introduction
of equilibrium optimizer. Section 3 presents the fundamental principles of the proposed
binary equilibrium optimizer (BEO). Section 4 discusses the experimental results of the
benchmark functions and BEO is compared with five famous binary optimization methods,
including: 1) BDE [40], a binary version of evolutionary algorithm differential evolution
(DE). 2) BPSO [41], a binary version of swarm intelligence algorithm PSO. 3) BBA [42]
and BGWO [43], two binary versions of newly swarm intelligence algorithms bat algorithm
(BA) and GWO. 4) BPSOGSA [44], a binary version of hybrid algorithm of PSO and
gravitational search algorithm (GSA). BEO achieves great results in the solving quality,
time complexity and convergence. Section 5 implements feature selection by the compared
algorithms and argues the results. Section 6 concludes the works and suggests several
directions for further studies.

2. Equilibrium Optimizer. Equilibrium optimizer is a newly physics-based algorithm,
proposed by Faramarzi et al. in 2020. It utilizes the dynamic models of sink and source
for estimating equilibrium concentration.

Binary Equilibrium Optimizer Algorithm 47

2.1. Inspiration Analysis. The mass conservation equation represents the equilibrium
calculation for adding and removing mass in a defined fluid region. Suppose V is a fixed,
undeformed fluid volume, called the control volume. The mass conservation requires that
the change rate of mass in the control volume (V) over time is equal to the mass rate
entering the V plus the incremental/lost mass rate in the V due to the source and sink
effects. The integral form of the mass conservation in the control volume is expressed as
follows:

V
dC

dt
= QCeq −QC +G (1)

where C represents the concentration in the V .
dC

dt
means the change rate of mass in

the V . Q denotes the volume flow in and out of the V . Ceq is the concentration in the
equilibrium state, in which there is no production in the V . G is the generation rate of

mass within the V . When
dC

dt
equals zero, V reaches a steady equilibrium state. Then,

the function of time (t) for the concentration (C) in the V is obtained by rearranging Eq
(1).

dC

λCeq − λC + G
V

= dt (2)

where λ = Q
V

, Eq (3) is computed by integrating of Eq (2).∫ C

C0

dC

λCeq − λC + G
V

=

∫ t

t0

dt (3)

Finally, Eq (4) is calculated by Eq (3).

C = Ceq + (C0 − Ceq)F +
G

λV
(1− F) (4)

where F = exp[−λ(t− t0)]. C0 and t0 are the initial values of concentration and time. Eq
(4) can either calculate the concentration in the V by a given turnover rate, or compute
the average turnover rate with a simple linear regression using the given generation rate
and other prerequisites.

2.2. Mathematical Model of EO. EO randomly initializes the positions of the popu-
lation and a concentration represents the position of a particle. V is a unit volume. The
position updating is defined as follows.

−→
Ci(n+ 1) =

−→
Ceq(n) + (

−→
Ci(n)−

−→
Ceq(n))

−→
F (n) +

−→
G(n)

λ
(1−

−→
F (n)) (5)

Ceq is the equilibrium pool and is constructed by the positions of the first four optimal
solutions and their average value. The algorithm randomly chooses one from Ceq for each
run.
F is an exponential term, which is used to control the balance between exploration and

exploitation of the algorithm.

t(n) = (1− n

Max iter
)(2

n
Max iter

) (6)

−→
F (n) = sign(−→r − 0.5)[e−

−→
λ t(n) − 1] (7)

whereMax iter means the maximum iteration. −→r and
−→
λ are two random vectors between

[0,1]. Sign is the signum function of Matlab. G assists the algorithm to acquire better
performance and it is computed as follows.

48 P. Hu, S.C. Chu, V. Snášel and J.S. Pan

GCP =

{
0.5r1 if(r2 ≥ GP)
0 else

(8)

−→
G0(n) = GCP ∗ (

−→
Xeq(n)−

−→
Xi(n)) (9)

−→
G(n) =

−→
G0(n) ∗

−→
F (n) (10)

where r1 and r2 are two random numbers between [0,1].

3. Binary Equilibrium Optimizer (BEO). In the EO, particles can be anywhere in
the search space. While the position of a particle is encoded with a binary vector in
the binary equilibrium optimizer (BEO), particles update their positions by changing 0
to 1, or 1 to 0. Their positions are very restricted and BEO cannot utilize the Eq (6)
to perform the position updating. The difference between EO and BEO is the position
updating mechanism. Consequently, several models of EO are modified to meet the needs
of BEO.

In the EO, the position updating of a particle is mainly accomplished by the equilibrium
pool, exponential term F and generation rate G. The equilibrium pool contains the first
four optimal solutions and the average of them, but the value may not be 1 or 0 in the
binary EO. For example, in the jth dimension, Cj

eq,1 = 1, Cj
eq,2 = 1, Cj

eq,3 = 1 and Cj
eq,4 = 0,

then Cj
eq,avg = 0.75, which contradicts the position requirement of BEO. So the updating

of Cj
eq,avg is redefined as following:

Cj
eq,avg(n) =

 1 if(Cj
eq,1(n) + Cj

eq,2(n) + Cj
eq,3(n)

+Cj
eq,4(n)) ≥ 2

0 else

(11)

Eq (11) ensures that all solutions in the equilibrium pool are located at 0 or 1 of the
hypercube. In the EO, only when the values of the four optimal solutions are all 1 or all
0 can the requirements of BEO be satisfied. From Eq (11), it is known that if half of the
first four optimal values are 1, Ceq,avg is 1. BEO has a high probability of acquiring 1
from the equilibrium pool.
F is used to control the exploration and exploitation of EO and G enhances the al-

gorithm’s global and local search. Both of them play an important role in the updating
position of EO. In BEO, they need to be mapped to the [0, 1] space using a transfer
function and then they are compared with a random number between [0,1]. BEO adopts
the following transfer function and the curve of it is shown in the Figure 1:

V (x) = 1/(1 + exp(−10 ∗ (x− 0.4))) (12)

where x = (Cj
i − Cj

eq) ∗ F + (G/λ) ∗ (1− F).

−10 −8 −6 −4 −2 0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Transfer Function

x

V(
x)

V(x)=1/(1+exp(−10*(x−0.4)))

Figure 1. BEO’s transfer function.

Binary Equilibrium Optimizer Algorithm 49

After calculating the value of transfer function, a new position updating equation is
proposed.

Cj
i =

{
1− Cj

i if(V (x) ≥ rand)

Cj
i else

(13)

Algorithm 1 is the pseudo code of BEO.

Algorithm 1: BEO

1 Initialize the related parameters of EO;

2 Randomly generate the positions of particles;

3 Compute the fitness of each particle;

4 for it = 1 : MAX IT do

5 Ceq,1 = the position of the first optimal solution;

6 Ceq,2 = the position of the second optimal solution;

7 Ceq,3 = the position of the third optimal solution;

8 Ceq,4 = the position of the fourth optimal solution;

9 for d = 1 : dim do

10 Use Eq (11) to update Cd
eq,avg;

11 Cpool = [Ceq,1;Ceq,2;Ceq,3;Ceq,4;Ceq,avg];

12 t = (1− it/MAX IT)(2∗n/MAX IT);

13 for i = 1 : population size do

14 Ceq = Cpool(randi(size(Cpool, 1)), :);

15 for d = 1 : dim do

16 λ = rand() ;

17 r = rand() ;

18 F = sign(r − 0.5) ∗ (exp(−λ ∗ t)− 1);

19 r1 = rand();

20 r2 = rand();

21 GCP = 0.5 ∗ r1 ∗ (r2 >= GP);

22 G0 = GCP ∗ (Ceq(d)− λ ∗X(i, d));

23 G = G0. ∗ F ;

24 tran val = (C(i, d)− Ceq(d)) ∗ F + (G/λ) ∗ (1− F);

25 Use Eq (12) to acquire s by tran val;

26 Use Eq (13) to update C(i, d) by s;

27 Update the fitness of C(i);

28 Output Ceq,1;

50 P. Hu, S.C. Chu, V. Snášel and J.S. Pan

4. Experimental Results and Analysis. In this section, 29 benchmark functions ex-
amine the abilities of BEO, where the functions have been used by EO and many re-
searchers. In order to validate the performance of BEO, it is compared with BBA, BDE,
BGWO, BPSO and BPSOGSA. Table 1 describes the details of the benchmark func-
tions. Space shows the boundary of search space; Dim denotes the dimension and fmin
represents the optimum.

Benchmark functions include unimodal, multimodal, fixed-dimension and composite
functions. Where f1-f7 are unimodal functions, f8-f13 are multimodal functions, f14-f23
are fixed-dimension functions, the rests are composite functions.

To make a fair comparison, all algorithms run 500 iterations and 30 times in every
benchmark function, and their population size is 30. Table 2 lists the values of the key
parameters of the compared algorithms. For the convenience of reading, all experimental
data in this section and Section 5 are rounded to four decimal places. Wilcoxon’s rank
sum test is performed at a 5% significance level to judge whether the experimental results
are statistically significant.

Table 3 shows the average (AVG) and standard deviation (STD) values of the compared
algorithms in the benchmark functions. In Table 3, if the compared algorithms acquire
the best result in the benchmark function, their data has red color. Table 4 is the results
of Wilcoxon’s rank-sum test based on BEO. ”+” shows that the compared algorithm is
superior to BEO, and ”=” means that the algorithms have the same results. ”-” represents
that the algorithm is inferior to BEO.

4.1. Analyse the Solution Quality. From Table 3, it is concluded that BEO has the
best performance. Except for f25, it has the optimal results in the compared algorithms.
BPSOGSA wins the second performance and performs well in 18 test functions, which is
superior to the test results of BPSO. As can be seen from Table 4, BBA implements the
worst and has 20 test functions that are inferior to BEO. BDE has 12 test functions worse
than BEO, but only it has the only function better than BEO. BGWO is not as good as
BEO in 16 test functions. BPSO and BPSOGSA have 7 and 6 functions that are worse
than BEO. In terms of stability, BEO also executes perfectly. It is only slightly less stable
in f25 (4.1422) and other test functions have no significant fluctuations. BPSOGSA has
well stability in the multimodal and fixed-dimension functions. BPSO has good stability
in the fixed-dimension functions. Regardless of the solution quality and stability, BEO is
superior to other compared algorithms. This is an evidence that the parameters F and
G well balance the local search and global search of the BEO, and have a forceful ability
to find the optimal value.

BEO achieves satisfying results in the unimodal functions, except for f5. The results
acquired by other algorithms are not as good as BEO. BPSOGSA obtains the optimal
solution in 2 test functions. BDE and BGWO acquire the optimal solution in 1 function.
It demonstrates that BEO has high performance in seeking for the global solutions in the
unimodal functions. The generation rate G helps the algorithm to exploit the optimal
solution more carefully in the known space.

BEO again performs well in the multimodal functions, especially it earns the theoreti-
cally optimal value in f9, f10, f11 and f13. BPOSGA achieves the optimal solution in f9,
f10 and f13. BDE and BGWO acquire the optimal result in f13. Multimodal function
contains exponential local optima, so it is appropriate to judge whether the algorithm
prevents falling into local minima. This shows that BEO effectively avoids local optimum
and has the ability to jump out of local traps. The exponential term F makes BEO search
for the optimal value in more space.

Binary Equilibrium Optimizer Algorithm 51

Table 1. The benchmark functions.

Function Space Dim fmin

f1(x) =
∑n
i=1 x

2
i [-100, 100] 30 0

f2(x) =
∑n
i=1 |xi|+

∏n
i=1 |xi| [-10, 10] 30 0

f3(x) =
∑n
i=1(

∑i
j−1 xj)

2 [-100, 100] 30 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} [-100, 100] 30 0

f5(x) =
∑n−1
i=1 [100(xi+1 − x2i)2 + (xi − 1)2] [−30, 30] 30 0

f6(x) =
∑n
i=1([xi + 0.5])2 [-100, 100] 30 0

f7(x) =
∑n
i=1 ix

4
i + random[0, 1) [-1.28, 1.28] 30 0

f8(x) =
∑n
i=1−xisin(

√
|xi|) [-500,500] 30 -12569

f9(x) =
∑n
i=1[x2i − 10cos(2πxi) + 10] [-5.12,5.12] 30 0

f10(x) = −20exp(−0.2

√
1

n

∑n
i=1 x

2
i)− exp(

1

n

∑n
i=1 cos(2πxi)) + 20 + e [-32,32] 30 0

f11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 [-600,600] 30 0

f12(x) =
π

n
{10sin(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2}+∑n

i=1 u(xi, 10, 100, 4)yi = 1 +
xi + 1

4
u(xi, a, k,m) =

k(xi − a)m xi>a

0 − a<xi<a
k(−xi − a)m xi<− a

[-50,50] 30 0

f13(x) =
0.1{sin2(3πx1) +

∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1+

sin2(2πxn)]}+
∑n
i=1 u(xi, 10, 100, 4)

[-50,50] 30 0

f14(x) = (1
500

∑25
j=1

1

j +
∑2
i=1(xi − aij)6

)−1
[-65, 65] 2 1

f15(x) =
∑11
i=1[ai −

x1(b2i + bix2)

b2i + bix3 + x4
]2 [-5, 5] 4 0.00030

f16(x) = 4x21 − 2.1x41 + 1
3
x61 + x1x2 − 4x22 + 4x42 [-5, 5] 2 -1.0316

f17(x) = (x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6)2 + 10(1− 1

8π
)cosx1 + 10 [-5, 5] 2 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2
+3x22)]× [30 + (2x1 − 3x2)2 × (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

[-2, 2] 2 3

f19(x) = −
∑4
i=1 ciexp(−

∑3
j=1 aij(xj − pij)

2) [1, 3] 3 -3.86

f20(x) = −
∑4
i=1 ciexp(−

∑6
j=1 aij(xj − pij)

2) [0, 1] 6 -3.32

f21(x) = −
∑5
i=1[(X − ai)(X − ai)T + ci]

−1 [0, 10] 4 -10.1532

f22(x) = −
∑7
i=1[(X − ai)(X − ai)T + ci]

−1 [0, 10] 4 -10.4028

f23(x) = −
∑10
i=1[(X − ai)(X − ai)T + ci]

−1 [0, 10] 4 -10.5363
f24 f1, f2, f3, ..., f10 = Sphere Function

[σ1, σ2, ..., σ10] = [1, 1, 1, ..., 1]
[λ1, λ2, ..., λ10] = [5/100, 5/100, 5/100, ..., 5/100]

[-5, 5] 30 0

f25 f1, f2, f3, ..., f10 = Griewank′s Function
[σ1, σ2, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, ..., λ10] = [5/100, 5/100, 5/100, ..., 5/100]
[-5, 5] 30 0

f26 f1, f2, f3, ..., f10 = Griewank′s Function
[σ1, σ2, ..., σ10] = [1, 1, 1, ..., 1]
[λ1, λ2, ..., λ10] = [1, 1, 1, ..., 1]

[-5, 5] 30 0

f27 f1, f2 = Ackley′sFunction, f3, f4 = Rastrigin′s Function,
f5, f6 = WeierstrassFunction, f7, f8 = Griewank′sFunction

f9, f10 = Sphere Function
[σ1, σ2, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, ..., λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]

[-5, 5] 30 0

f28 f1, f2 = Rastrigin′s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank′sFunction, f7, f8 = Ackley′s Function

f9, f10 = Sphere Function
[σ1, σ2, ..., σ10] = [1, 1, 1, ..., 1]

[λ1, λ2, ..., λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

[-5, 5] 30 0

f29 f1, f2 = Rastrigin′s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank′s Function, f7, f8 = Ackley′s Function

f9, f10 = Sphere Function
[σ1, σ2, ..., σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[λ1, λ2, ..., λ10] = [0.1 ∗ 1/5, 0.2 ∗ 1/5, 0.3 ∗ 5/0.5, 0.4 ∗ 5/0.5,
0.5 ∗ 5/100, 0.6 ∗ 5/100, 0.7 ∗ 5/32, 0.8 ∗ 5/32, 0.9 ∗ 5/100, 1 ∗ 5/100]

[-5, 5] 30 0

52 P. Hu, S.C. Chu, V. Snášel and J.S. Pan

Table 2. The details of the compared algorithms.

Algorithm Parameters

BBA A=0.9 r=0.9 Fmax=2 Fmin=0
BDE cr=0.9
BGWO a=2
BPSO c1=2 c2=2 w=2 wmax=0.9 wmin=0.4 Vmax=6
BPSOGSA α=20 G0=100 Rnorm=2 Rpower=1

Table 3. The statistical results of the compared algorithms.

Fun-

ction

BBA BDE BEO BGWO BPSO BPSOGSA

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

f1 1.0667 0.9803 2.9333 1.6595 0 0 5.2333 1.2507 0.0333 0.1826 0 0

f2 1.0667 1.0483 3.0667 1.388 0 0 4.9667 1.3257 0.0333 0.1826 0 0

f3 26.2333 39.9704 148.5 117.0967 0 0 321.6333 166.2421 0.1 0.3051 0.0333 0.1826

f4 0.8333 0.379 1 0 0 0 1 0 1 0 1 0

f5 290.4333 159.6282 0 0 0 0 0 0 116.5333 95.5369 198.9333 120.9357

f6 9.5667 2.2581 13.7 2.7965 7.5 0 18.6333 3.3086 7.5667 0.3651 7.5 0

f7 25.5569 22.7144 50.7334 22.9601 0.0001 0.0001 72.6001 16.2896 0.431 0.6022 0.0668 0.2537

f8 -17.3624 0.8114 -25.2441 0 -25.2441 0 -25.2441 0 -25.2441 0 -25.2441 0

f9 1.0667 1.1427 3.7333 1.4126 0 0 4.8667 1.4077 0.0667 0.2537 0 0

f10 0.5521 0.4578 1.2127 0.2755 0 0 1.606 0.1836 0 0 0 0

f11 0.0372 0.0376 0.1624 0.0587 0 0 0.2331 0.0603 0.0017 0.0052 0 0

f12 1.8514 0.1334 2.0876 0.1971 1.669 0 2.5868 0.2465 1.6707 0.0096 1.669 0

f13 0.9567 0.1135 0 0 0 0 0 0 0.0033 0.0183 0 0

f14 12.6705 0 12.6705 0 12.6705 0 12.6705 0 12.6705 0 12.6705 0

f15 0.1484 0 0.1484 0 0.1484 0 0.1484 0 0.1484 0 0.1484 0

f16 0 0 0 0 0 0 0 0 0 0 0 0

f17 27.7029 0 27.7029 0 27.7029 0 27.7029 0 27.7029 0 27.7029 0

f18 600 0 600 0 600 0 600 0 600 0 600 0

f19 -0.3348 0 -0.3348 0 -0.3348 0 -0.3325 0.0087 -0.3348 0 -0.3348 0

f20 -0.1507 0.0306 -0.1602 0.0143 -0.1657 0 -0.1415 0.0478 -0.1657 0 -0.1657 0

f21 -4.6379 1.2734 -5.0552 0 -5.0552 0 -5.0552 0 -5.0552 0 -5.0552 0

f22 -4.8092 1.0597 -5.0877 0 -5.0877 0 -5.0877 0 -5.0877 0 -5.0877 0

f23 -4.7105 1.2754 -5.1285 0 -5.1285 0 -5.1285 0 -5.1285 0 -5.1285 0

f24 887.8665 4.72 900 0 857.243 0 870.6608 6.3999 857.3351 0.1694 857.3345 0.433

f25 918.036 12.7047 900 0 915.2382 4.1422 924.2313 3.5271 916.3785 0.1103 916.4276 0.2109

f26 948.7455 63.8031 900 0 900 0 1147.0084 28.1442 906.4274 11.1142 903.1327 8.1404

f27 934.2393 22.9375 900 0 900 0 1012.6667 8.2132 900.9881 5.412 900 0

f28 955.805 41.2041 900 0 900 0 1064.43 9.0621 904.4227 13.4979 907.5154 17.0998

f29 908.6275 7.757 900 0 900 0 926.5543 2.7821 903.8725 4.1036 908.0299 6.4098

Fixed-dimension function only has a few local optimal solutions and the dimension is
small. BEO, BPSO and BPSOGSA have exactly the same results. BGWO shows not well
in f20 and BGWO performs worse in f19 and f20. BBA executes the worst. Composite
multimodal function has exceptionally complex structures with several randomly located
deep local optima and many randomly located global optimum. The compared algorithms
don’t achieve good results. BDE and BEO complete relatively well. Although BEO does
not perform as well as BDE in f25, it is better than BBA, BGWO, BPSO and BPSOGSA.

4.2. Analyse the Time Complexity and Convergence. The time complexity of
BBA, BDE, BEO, BGWO and BPSOGSA is O(T*P*f+T*P*D*ft), while BPSOGSA
is O(T*P*f+T*P*P*D*ft). Where T is the iterations, P means the population size, f
represents the computational time of the fitness function, ft denotes the running time of
transfer function. Table 5 is the average time of the compared algorithms running once in
the benchmark function. It can be seen that BPSO has the least time complexity because
of its few parameters and simple updating equations. Although the solution quality of
BPSOGSA has been greatly improved compared with BPSO, it utilizes the calculation
equations of BPSO and BGSA, and has a large running time. The transfer function of
BBA is more complicated than BDE, BEO, BGWO and BPSO, so the time is large. BEO
is the second only to BPSO, which shows that its equations are not too complicated. The
compared algorithms have the lowest time complexity in f15-f23 and have little difference
for running time in f1-f12, which indicates that the dimension is a significant element

Binary Equilibrium Optimizer Algorithm 53

Table 4. Wilcoxon’s rank-sum test for the optimal results on BEO.

Function BBA BDE BGWO BPSO BPSOGSA

f1 - - - = =
f2 - - - = =
f3 - - - = =
f4 - - - - -
f5 - = = - -
f6 - - - = =
f7 - - - - =
f8 - = = = =
f9 - - - = =
f10 - - - = =
f11 - - - = =
f12 - - - = =
f13 - = = = =
f14 = = = = =
f15 = = = = =
f16 = = = = =
f17 = = = = =
f18 = = = = =
f19 = = = = =
f20 - - - = =
f21 = = = = =
f22 = = = = =
f23 = = = = =
f24 - - - - =
f25 - + - - -
f26 - = - - -
f27 - = - = =
f28 - = - = -
f29 - = - - -

influencing the time complexity of algorithm and it is not related to whether the test
function is an unimodal or a multimodal function. While they have large computational
time in f24-f29, which proves that the structure of the benchmark function affects the
time complexity of algorithm.

Unimodal function includes merely a global optimal solution and it has no local trap.
Consequently, it is useful to examine the convergence rates of the algorithms. Figure 2
displays the curves of the compared algorithms in the unimodal functions. In f1, f2, f3,
f6 and f7, BBA has a faster convergence speed at the beginning of iteration, but the
final results are worse than BEO due to its stagnation. While the convergence rates and
final solutions of BEO are better than BDE, BGWO, BPSO and BPSOGSA. In f4, BDE,
BGWO, BPSO and BPSOGSA have the completely consistent performance, therefore just
the convergence curve of BPSOGSA is seen in the figure. In f5, BBA, BGWO and BPSOG
converge faster than BEO, and merely the solution of BGWO is the same as BEO. BEO
not only has the ability of fast convergence, but also finds the optimal solution.

From above discussion, the optimization ability, time complexity and convergence are
mentioned. BEO inherits the low calculation time of EO and has strong abilities of finding
the optimal solution and fast convergence through the new transfer function. Because
the positions of binary algorithms only take 0 and 1, it must be pointed out that these
algorithms converge quickly. But once they get caught in a local optimum, the algorithms
are easily being stagnation.

54 P. Hu, S.C. Chu, V. Snášel and J.S. Pan

Table 5. The average running time of the compared algorithms.

Function BBA BDE BEO BGWO BPSO BPSOGSA

f1 1.5155 0.3468 0.325 9.5608 0.1337 1.4695
f2 1.5239 0.3619 0.3412 9.5345 0.1505 1.488
f3 2.1954 1.0487 1.0267 10.2841 0.8462 2.2584
f4 1.667 0.4118 0.3846 9.5601 0.1914 1.5397
f5 1.5974 0.4454 0.4187 9.5892 0.2258 1.5473
f6 1.5966 0.439 0.4031 9.5737 0.2227 1.5462
f7 1.6356 0.4471 0.4399 9.6186 0.243 1.5365
f8 1.6221 0.4757 0.4347 9.6094 0.249 1.559
f9 1.6474 0.4683 0.4432 9.659 0.239 1.5572
f10 1.6462 0.4805 0.4433 9.6401 0.2604 1.5743
f11 1.6727 0.5114 0.4737 9.6846 0.2846 1.5975
f12 1.9866 0.8043 0.7861 9.9524 0.5924 1.9086
f13 1.959 0.8013 0.7831 9.9202 0.574 1.8799
f14 1.5353 1.6827 1.5475 1.949 1.4293 2.2927
f15 0.3936 0.4406 0.32 1.4238 0.1774 1.1339
f16 0.221 0.3739 0.2434 0.7266 0.1078 1.0193
f17 0.2118 0.3657 0.2405 0.7218 0.1006 1.0113
f18 0.227 0.3753 0.2483 0.7295 0.1111 1.022
f19 0.4146 0.5181 0.3974 1.1804 0.2505 1.1806
f20 0.56 0.5197 0.413 2.1291 0.2595 1.2422
f21 0.4933 0.5501 0.4369 1.5414 0.2933 1.231
f22 0.5477 0.6014 0.492 1.5811 0.3392 1.2797
f23 0.6262 0.6776 0.5802 1.663 0.4162 1.3554
f24 73.7952 73.4408 68.9057 78.7799 69.4932 70.49
f25 78.097 74.1121 73.4106 82.7751 73.8172 74.8666
f26 75.3479 71.4213 69.9987 79.9712 70.2471 71.4914
f27 100.8156 96.3498 96.6701 107.2902 95.3859 97.3836
f28 100.8077 96.6088 96.0334 105.1755 94.5929 97.2641
f29 102.2629 97.157 97.0355 104.8673 94.8697 98.5768

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10
Convergence Curve

Iteration

A
v
e
ra

g
e
 F

it
n
e
s
s

BBA
BDE
BEO
BGWO
BPSO
BPSOGSA

(a) f1.

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

Convergence Curve

Iteration

A
v
e

ra
g

e
 F

it
n

e
s
s

BBA
BDE
BEO
BGWO
BPSO
BPSOGSA

(b) f2.

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

Convergence Curve

Iteration

A
v
e
ra

g
e
 F

it
n
e
s
s

BBA
BDE
BEO
BGWO
BPSO
BPSOGSA

(c) f3.

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Convergence Curve

Iteration

A
v
e
ra

g
e

 F
it
n
e

s
s

BBA
BDE
BEO
BGWO
BPSO
BPSOGSA

(d) f4.

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

Convergence Curve

Iteration

A
v
e

ra
g

e
 F

it
n

e
s
s

BBA
BDE
BEO
BGWO
BPSO
BPSOGSA

(e) f5.

50 100 150 200 250 300 350 400 450 500

8

10

12

14

16

18

20

22

24

26

Convergence Curve

Iteration

A
v
e

ra
g

e
 F

it
n

e
s
s

BBA
BDE
BEO
BGWO
BPSO
BPSOGSA

(f) f6.

50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

120

140

Convergence Curve

Iteration

A
v
e

ra
g

e
 F

it
n

e
s
s

BBA
BDE
BEO
BGWO
BPSO
BPSOGSA

(g) f7.

Figure 2. Convergence curves of the unimodal benchmark functions.

5. Application for Feature Selection. This section will use the wrapper method to
implement feature selection in the UCI datasets. It adopts KNN and K-fold cross valida-
tion as the classification algorithms, the commonly used in the data mining [45,46].

Binary Equilibrium Optimizer Algorithm 55

Table 6. The details of the simulation data sets.

Data set Name Instances Attributes

Adult Adult 48842 14
Breast Cancer Wisconsin (Diagnostic) CancerWD 569 32
Breast Cancer Wisconsin (Prognostic) CancerWP 198 34
Breast Cancer Cancer 286 9
Car Evaluation Car 1728 6
Chess (King-Rook vs. King-Pawn) Chess 3196 36
Congressiona Voting Records Voting 435 16
Credit Approval Credit 690 15
Dermatology Dermatology 366 33
Statlog (Heart) Heart 270 13
Lymphography Lymphography 148 18
SPECT Heart SPECT 267 22
Waveform (Version 2) Waveform 5000 40

Table 7. The errors and numbers of the compared algorithms on KNN.

Data set
BBA BDE BEO BGWO BPSO BPSOGSA

Error Number Error Number Error Number Error Number Error Number Error Number

Adult 0.2467 5 0.257 5.4 0.2376 1 0.2629 5.3 0.2378 1 0.2394 1.9

CancerWD 0.0605 9.2 0.0544 20.25 0.0488 9.9 0.0569 19.5 0.0498 13.15 0.0491 14

CancerWP 0.2123 13.85 0.1998 22 0.1858 11.75 0.2108 21.45 0.1955 15.55 0.1893 16.05

Cancer 0.2467 3 0.2306 4.55 0.2256 2.8 0.2334 4.85 0.2282 3.35 0.2278 3.35

Car 0.1773 1.15 0.1009 5.8 0.0904 6 0.0899 6 0.0919 6 0.0907 6

Chess 0.1174 8 0.0748 27.45 0.0374 16.35 0.0736 26.5 0.0516 19.15 0.0532 18.1

Voting 0.17 6.35 0.155 9.85 0.1506 6.15 0.1633 10.95 0.1548 6.8 0.1542 7.55

Credit 0.1928 4.45 0.1835 7.6 0.127 4.15 0.1639 7.25 0.1316 4.5 0.1326 4.45

Dermatology 0.0548 4.7 0.0215 26.7 0.0176 16.6 0.0208 25.5 0.022 19.15 0.0208 19.35

Heart 0.418 4.05 0.393 6.95 0.3762 3.75 0.3925 6.9 0.3854 4.3 0.3883 4.8

Lymphography 0.1974 4.85 0.1464 11.8 0.1325 8 0.1547 11.8 0.1405 9 0.1418 8.95

SPECT 0.2747 8.1 0.257 16.05 0.2376 7.25 0.2573 15.05 0.2526 9.55 0.2503 9.9

Waveform 0.209 9.2 0.1766 33.2 0.1602 17.1 0.1741 31.65 0.1731 22.25 0.1666 22.35

5.1. Simulation Results. 13 data sets are employed to validate the performance of
BEO. These data sets are from UCI machine learning repository [47] and Table 6 describes
the details of the data sets. They run 100 iterations and 20 times on each data set, and
every algorithm has 10 particles.

5.2. KNN Simulation Analysis. Table 7 is the data acquired by KNN. The error in-
dicates the classification error of the algorithm and the number is the number of features
obtained by the algorithm. The red font is the lowest error and the smallest number
of features in the corresponding data set. It can be drawn that BEO achieves the least
classification errors in the CancerWD, CancerWP, Cancer, Chess, Voting, Credit, Derma-
tology, Heart, Lymphography, SPECT and Waveform. BGWO implements the optimal
results in the Adult and Car. BBA and BEO excel in the selected sub-features, and they
get the minimum values in 6 and 7 data sets respectively. While BPSO only performs
well in the Adult. BEO accomplishes the minimum errors and features in the CancerWD,
Cancer, Voting, Credit, Heart and Spect.

The compared algorithms have small classification errors in the CancerWD and Der-
matology, and have large errors in the Heart. This is because the features of CancerWD
and Dermatology are single and it is easy for them to establish classification models. Al-
though there are only two types of Heart, its data structure is complex. Adult has lots
of instances, but its missing data is also the reason for the high classification error.

6. Conclusions. Although Equilibrium optimizer has just been proposed, it has shown
great performance in the benchmark functions and engineering applications. To apply
EO to feature selection, this paper brings a binary version, named BEO. It retains most

56 P. Hu, S.C. Chu, V. Snášel and J.S. Pan

of the operations of EO, so it well balances exploration and exploration. The transfer
function converts the operational result of EO to [0,1] interval, therefore it has a crucial
impact on the performance of BEO. This paper proposes a new transfer function to
complete the value representation. The experiments show that BEO exceeds BBA, BDE,
BGWO, BPSO and BPSOGSA. At the end of the paper, these algorithms complete feature
selection in the UCI and BEO shows excellent performance.

For further studies, we conceive applying BEO to practical applications such as power
system, text classification and so on. It is also worth studying the variant of BEO to get
ideal result in a particular area.

Acknowledgment. This work is supported by the National Natural Science Foundation
of China (61872085), the Natural Science Foundation of Fujian Province (2018J01638)
and the Fujian Provincial Department of Science and Technology (2018Y3001).

REFERENCES

[1] A.-Q. Tian, S.-C. Chu, J.-S. Pan, H. Cui, and W.-M. Zheng, A compact pigeon-inspired optimization
for maximum short-term generation mode in cascade hydroelectric power station, Sustainability,
vol. 12, no. 3, 767, 2020.

[2] Z.-G. Du, J.-S. Pan, S.-C. Chu, H.-J. Luo, and P. Hu, Quasi-affine transformation evolutionary
algorithm with communication schemes for application of rssi in wireless sensor networks, IEEE
Access, vol. 8, pp. 8583–8594, 2020.

[3] J. M.-T. Wu, J. Zhan, and J. C.-W. Lin, An aco-based approach to mine high-utility itemsets,
Knowledge-Based Systems, vol. 116, pp. 102–113, 2017.

[4] T.-Y. Wu, C.-M. Chen, K.-H. Wang, and J. M.-T. Wu, Security analysis and enhancement of a
certificateless searchable public key encryption scheme for iiot environments, IEEE Access, vol. 7,
pp. 49232–49239, 2019.

[5] J. C.-W. Lin, Y. Zhang, C.-H. Chen, J. M.-T. Wu, C.-M. Chen, and T.-P. Hong, A multiple objective
pso-based approach for data sanitization, in 2018 Conference on Technologies and Applications of
Artificial Intelligence (TAAI), pp. 148–151, IEEE, 2018.

[6] T.-Y. Wu, C.-M. Chen, K.-H. Wang, C. Meng, and E. K. Wang, A provably secure certificateless
public key encryption with keyword search, Journal of the Chinese Institute of Engineers, vol. 42,
no. 1, pp. 20–28, 2019.

[7] J. M.-T. Wu, J. C.-W. Lin, Y. Djenouri, P. Fournier-Viger, and Y. Zhang, A swarm-based data
sanitization algorithm in privacy-preserving data mining, in 2019 IEEE Congress on Evolutionary
Computation (CEC), pp. 1461–1467, IEEE, Wellington, New Zealand, 10-13 June 2019.

[8] L. Zhao, M. Gai, and Y. Jia, Classification of multiple power quality disturbances based on pso-svm
of hybrid kernel function, Journal of Information Hiding and Multimedia Signal Processing, vol. 10,
no. 1, pp. 138–146, 2019.

[9] J. Wang, B.-W. Pan, Q.-R. Wang, and Q. Ding, A chaotic key expansion algorithm based on genetic
algorithm, Journal of Information Hiding and Multimedia Signal Processing, vol. 10, no. 2, pp. 289–
299, 2019.

[10] T.-Y. Wu, J. C.-W. Lin, Y. Zhang, and C.-H. Chen, A grid-based swarm intelligence algorithm for
privacy-preserving data mining, Applied Sciences, vol. 9, no. 4, 774, 2019.

[11] M. Xu, Y.-P. Feng, and Z.-M. Lu, Fast feature extraction based on multi-feature classification for
color image, Journal of Information Hiding and Multimedia Signal Processing, vol. 10, no. 2, pp. 338–
345, 2019.

[12] L. Kang, R.-S. Chen, N. Xiong, Y.-C. Chen, Y.-X. Hu, and C.-M. Chen, Selecting hyper-parameters
of gaussian process regression based on non-inertial particle swarm optimization in internet of things,
IEEE Access, vol. 7, pp. 59504–59513, 2019.

[13] H. Belhadi, K. Akli-Astouati, Y. Djenouri, J. C.-W. Lin, and J. M.-T. Wu, Gfsom: Genetic feature
selection for ontology matching, in International Conference on Genetic and Evolutionary Comput-
ing, pp. 655–660, Springer, Changzhou, China, 14-17 December 2018.

[14] F. Zhang, T.-Y. Wu, Y. Wang, R. Xiong, G. Ding, P. Mei, and L. Liu, Application of quantum
genetic optimization of lvq neural network in smart city traffic network prediction, IEEE Access,
vol. 8, pp. 104555–104564, 2020.

Binary Equilibrium Optimizer Algorithm 57

[15] W. Song and C. Huang, Mining high average-utility itemsets based on particle swarm optimization,
Data Science and Pattern Recognition, vol. 4, no. 2, pp. 19–32, 2020.

[16] T. T. Zin, P. Tin, and H. Hama, Characterizing reliability measure for internet of things by markov
queue, Data Science and Pattern Recognition, vol. 2, no. 2, pp. 1–10, 2018.

[17] L. Kong, C.-M. Chen, H.-C. Shih, C.-W. Lin, B.-Z. He, and J.-S. Pan, An energy-aware routing pro-
tocol using cat swarm optimization for wireless sensor networks, in Advanced Technologies, Embedded
and Multimedia for Human-Centric Computing, pp. 311–318, Springer, 2014.

[18] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas, A survey of sequential
pattern mining, Data Science and Pattern Recognition, vol. 1, no. 1, pp. 54–77, 2017.

[19] X. Xue and Y. Wang, Optimizing ontology alignments through a memetic algorithm using both
matchfmeasure and unanimous improvement ratio, Artificial Intelligence, vol. 223, pp. 65–81, 2015.

[20] X. Xue and J. Liu, Collaborative ontology matching based on compact interactive evolutionary
algorithm, Knowledge-Based Systems, vol. 137, pp. 94–103, 2017.

[21] Z.-G. Du, J.-S. Pan, S.-C. Chu, and Y.-J. Chiu, Improved binary symbiotic organism search algorithm
with transfer functions for feature selection, IEEE Access, vol. 8, pp. 225730–225744, 2020.

[22] X. Xue and J. Chen, Using compact evolutionary tabu search algorithm for matching sensor ontolo-
gies, Swarm and Evolutionary Computation, vol. 48, pp. 25–30, 2019.

[23] X. Xue, Y. Wang, and W. Hao, Optimizing ontology alignments by using nsga-ii, International Arab
Journal of Information Technology, vol. 12, no. 2, pp. 176–182, 2015.

[24] Z. Meng, J.-S. Pan, and L. Kong, Parameters with adaptive learning mechanism (palm) for the
enhancement of differential evolution, Knowledge-Based Systems, vol. 141, pp. 92–112, 2018.

[25] S.-C. Chu, H.-C. Huang, J. F. Roddick, and J.-S. Pan, Overview of algorithms for swarm intelligence,
in International Conference on Computational Collective Intelligence, pp. 28–41, Springer, Gdynia,
Poland, 21-23 September 2011.

[26] H.-C. Huang, S.-C. Chu, J.-S. Pan, C.-Y. Huang, and B.-Y. Liao, Tabu search based multi-
watermarks embedding algorithm with multiple description coding, Information Sciences, vol. 181,
no. 16, pp. 3379–3396, 2011.

[27] S. Qin, C. Sun, Y. Jin, Y. Tan, and J. Fieldsend, Large-scale evolutionary multi-objective
optimization assisted by directed sampling, IEEE Transactions on Evolutionary Computation,
doi:10.1109/TEVC.2021.3063606, 2021.

[28] J.-S. Pan, L. Kong, T.-W. Sung, P.-W. Tsai, and V. Snášel, A clustering scheme for wireless sensor
networks based on genetic algorithm and dominating set, Journal of Internet Technology, vol. 19,
no. 4, pp. 1111–1118, 2018.

[29] T.-K. Dao, T.-S. Pan, and J.-S. Pan, A multi-objective optimal mobile robot path planning based
on whale optimization algorithm, in 2016 IEEE 13th International Conference on Signal Processing
(ICSP), pp. 337–342, IEEE, Chengdu, China, 6-10 November 2016.

[30] G. Fu, C. Sun, Y. Tan, G. Zhang, and Y. Jin, A surrogate-assisted evolutionary algorithm with
random feature selection for large-scale expensive problems, in International Conference on Parallel
Problem Solving from Nature, pp. 125–139, Springer, Leiden, Netherlands, 5-9 September 2020.

[31] X. Kou and J. Feng, Matching ontologies through compact monarch butterfly algorithm, Journal of
Network Intelligence, vol. 5, no. 4, pp. 191–197, 2020.

[32] N. Neggaz, A. A. Ewees, M. Abd Elaziz, and M. Mafarja, Boosting salp swarm algorithm by
sine cosine algorithm and disrupt operator for feature selection, Expert Systems with Applications,
vol. 145, 103103, 2020.

[33] D. O’Neill, A. Lensen, B. Xue, and M. Zhang, Particle swarm optimisation for feature selection
and weighting in high-dimensional clustering, in 2018 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8, IEEE, Rio de Janeiro, Brazil, July 8-13 2018.

[34] M. Mafarja, A. Qasem, A. A. Heidari, I. Aljarah, H. Faris, and S. Mirjalili, Efficient hybrid nature-
inspired binary optimizers for feature selection, Cognitive Computation, vol. 12, no. 1, pp. 150–175,
2020.

[35] S. Arora and P. Anand, Binary butterfly optimization approaches for feature selection, Expert Sys-
tems with Applications, vol. 116, pp. 147–160, 2019.

[36] H. Faris, M. M. Mafarja, A. A. Heidari, I. Aljarah, A.-Z. Ala’M, S. Mirjalili, and H. Fujita, An efficient
binary salp swarm algorithm with crossover scheme for feature selection problems, Knowledge-Based
Systems, vol. 154, pp. 43–67, 2018.

[37] P. Hu, J.-S. Pan, and S.-C. Chu, improved binary grey wolf optimizer and its application for feature
selection, Knowledge-Based Systems, vol. 195, 105746, 2020.

58 P. Hu, S.C. Chu, V. Snášel and J.S. Pan

[38] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, Equilibrium optimizer: A novel opti-
mization algorithm, Knowledge-Based Systems, vol. 191, 105190, 2020.

[39] X.-W. Xu, T.-S. Pan, P.-C. Song, C.-C. Hu, and S.-C. Chu, Multi-cluster based equilibrium optimizer
algorithm with compact approach for power system network, Journal of Network Intelligence, vol. 6,
no. 1, pp. 117–142, 2021.

[40] G. Pampara, A. P. Engelbrecht, and N. Franken, Binary differential evolution, in 2006 IEEE Inter-
national Conference on Evolutionary Computation, pp. 1873–1879, IEEE, Vancouver, BC, Canada,
16-21 July 2006.

[41] J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997
IEEE International conference on systems, man, and cybernetics. Computational cybernetics and
simulation, vol. 5, pp. 4104–4108, IEEE, Orlando, FL, USA, 12-15 October 1997.

[42] S. Mirjalili, S. M. Mirjalili, and X.-S. Yang, Binary bat algorithm, Neural Computing and Applica-
tions, vol. 25, no. 3-4, pp. 663–681, 2014.

[43] E. Emary, H. M. Zawbaa, and A. E. Hassanien, Binary grey wolf optimization approaches for feature
selection, Neurocomputing, vol. 172, pp. 371–381, 2016.

[44] S. Mirjalili, G.-G. Wang, and L. d. S. Coelho, Binary optimization using hybrid particle swarm
optimization and gravitational search algorithm, Neural Computing & Applications, vol. 25, no. 6,
pp. 1423–1435, 2014.

[45] J. Deshmukh and U. Bhosle, A study of mammogram classification using adaboost with decision
tree, knn, svm and hybrid svm-knn as component classifiers, Journal of Information Hiding and
Multimedia Signal Processing, vol. 9, no. 3, pp. 548–557, 2018.

[46] Q. Song and T. Qin, Load forecasting based on wavelet submodel and ls-svm, Journal of Network
Intelligence, vol. 5, no. 3, pp. 102–112, 2020.

[47] A. Asuncion and D. Newman, Uci machine learning repository, 2007.

