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ABSTRACT. With the massive deployment of location acquisition devices, an increasing
amount of traffic trajectory data is generated. Since traffic trajectory data is spatial data,
querying it requires a large number of spatial computation operations. However, as the
number of users becomes increasingly large, real-time querying of large data of traffic
trajectories becomes very difficult. To solve this problem, this work designs an efficient
spatial indexing algorithm based on Hilbert-R-tree using the cloud computing platform
Hadoop. First, the spatial data set is pre-processed and the pre-processed data set is
Hilbert coded. Then, the encoded spatial dataset is sorted and partitioned in parallel, and
the partitioned dataset is sent to each host node. In order to solve the problem of uneven
spatial distribution, the spatial index structure is constructed using parallel computing
mode and the spatial index structure constructed in each host node is merged so as to
ensure the adjacency of the spatial data. Finally, local indexes are constructed using
R-trees and global indexes are constructed using improved Hilbert-R-tree to improve the
efficiency of spatial data retrieval. A test analysis was conducted on a Hadoop distributed
environment with real traffic data as an example. The results show that the spatial data
indexing in the distributed environment has good performance and can meet the demand
for real-time query of big data of traffic trajectories.

Keywords: Traffic tracks; Big data; Parallel computing; Hadoop; Spatial indexing

1. Introduction. In recent years, with the rapid development and popularity of the In-
ternet, spatial data query has played an increasingly important role in people’s social life.
At the same time, spatial application technologies based on Geographical Information
System (GIS) [1,2] and Location-Based Social Networking Services (LBSNS) [3,4] have
been widely used, and spatial query processing technology is the basic functional com-
ponent to support these spatial application The spatial query processing technology is
the basic functional component to support these spatial application technologies. Among
them, spatial queries are mainly concerned with traffic and travel applications.

With the development of satellite communication and location acquisition technology,
it has become increasingly convenient to obtain information about the spatial location of
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a target at a certain moment in time, which has led to a multiplication of the amount
of location information in recent years [5]. A large amount of trajectory data is gener-
ated around moving objects such as vehicles, ships, people and animals, and has typical
object-related characteristics, such as the trajectory data of a vehicle for a day. These
trajectory data, in turn, involve properties in both time and space dimensions, and can
often be regarded as time series data of mobile objects in a specific space (e.g. traffic
road network) [6]. Trajectory data has certain spatio-temporal correlation and distribu-
tion characteristics, and most trajectory analysis applications are based on these data
with spatio-temporal properties. However, with the geometric multiplication of spatial
data, the diversity of data types (e.g. multi-dimensional geographical data, etc.), and
the increasing density of concurrent access by multiple users, existing spatial data query
techniques are facing serious challenges [7,8].

Spatial data query techniques are widely used in many fields. With the development
of data acquisition technologies, the volume of data has expanded dramatically and the
variety of data has increased, making it difficult for traditional serial algorithms and
methods to effectively cope with the high performance requirements of data retrieval
[9,10], so parallel computing techniques can provide new solutions. Cloud Computing
can use inexpensive servers to form a cluster system to manage and apply large spatial
data through distributed technology. Cloud Computing has significant advantages over
other technologies in the processing of spatial big data due to its versatile, distributed,
large-scale and highly scalable characteristics. In the cloud computing environment, if the
reasonable storage and efficient indexing of spatial data can be realised, it will make it
more convenient for users to use spatial data quickly and conveniently. Currently, Hadoop
and MapReduce are being used to solve the problems of parallel access and processing of
spatial big data, enabling the processing of many types of large-scale data.

Therefore, this work attempts to implement parallel processing of spatial big data in
a cloud computing environment. Specifically, how to execute spatial indexing algorithms
on a Hadoop platform so as to achieve high performance querying of spatial data. Spatial
indexing is crucial for spatial databases, which can provide suitable data structures to
construct mapping relationships between spatial objects and spatial locations, enabling
one to precisely locate and quickly access specified spatial objects from spatial databases,
thus greatly improving data retrieval efficiency.

1.1. Related Work. Trajectory data has significant spatial characteristics and is data
information generated by recording the movement of a moving object. As a kind of
spatial data, trajectory data can be collected from various sources, such as GPS [11],
mobile services [12], mobile phone base stations [13], POS [14], in-vehicle recorders [15]
and so on. Spatial indexing as the basis of spatial databases, it has been extensively
studied, such as binary trees, B-trees, space-filling curves and Hashing trees, etc.

Binary tree based indexes are set to have no more than two nodes per node, and
are therefore only suitable for applications where the spatial data is evenly distributed,
and less efficient if the spatial data is unevenly distributed. B-tree based indexes are
derived from binary tree indexes and no longer set the number of leaf nodes per node to
2, which avoids the branch degradation that occurs in binary trees. Space-filling curve-
based indexing is based on dividing the region of a spatial object into multiple grids and
then connecting the grids with curves. Indexing based on Hashing tree [16] divides the
spatial data into multiple regions and generates a Key value for each region by using
spatial coordinates for Hash calculation, thus achieving fast location. However, there
are some shortcomings in the above methods when dealing with high-dimensional data
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and parallelisation, such as dimensionality reduction of high-dimensional data, division of
data, etc.

Over time, however, the emergence of distributed computing technologies has opened up
new opportunities for indexing spatial big data. With the rapid growth of spatial datasets,
various computations under the cloud computing platform have also been rapidly devel-
oped. One of the most widely used is MapReduce [17]. MapReduce is a computational
framework proposed by Google. Colosimo et al. [18] proposed to use MapReduce to con-
struct R-trees and use Z-curves as the partition function. Although the construction time
decreases significantly with increasing parallelism, the merging operation of R-trees tends
to lead to lower spatial query efficiency. Zhu et al. [19] proposed to use a per-layer design
on MapReduce to load R-trees in parallel, and the algorithm is easy to implement, highly
reliable and easy to scale. Sinha et al. [20] proposed algorithms that can quickly construct
R-tree space indexes based on the MapReduce parallel computing model. Baders et al.
[21] designed a two-tier distributed spatial index for pruning search spaces, and proposed
a MapReduce-based data indexing architecture to improve the computational power of
spatial queries.

Several of the approaches proposed above mostly construct indexes based on static
data, without fully analysing the shortcomings of traditional spatial indexing mechanisms,
especially the impact of the data partitioning process on individual host nodes in cloud
computing.

1.2. Motivation and contribution. In this paper, we propose a novel spatial indexing
algorithm for trajectory big data in a big data environment with the objective of optimis-
ing trajectory data query by taking massive traffic trajectory data from multiple sources
as the research object. The challenge of the research work is to design a spatial query
technique based on parallel processing, so as to efficiently handle the massive scale of
trajectory data.

The main innovations and contributions of this work include:

(1) As spatial data also grows dramatically and with increasing complexity, traditional
serial techniques become inefficient in handling spatial queries, so this paper proposes a
Hilbert-R-tree construction algorithm based on a parallel computing model. The proposed
algorithm uses the properties of Hilbert space curves to sort and partition spatial data in
parallel, while it well balances the load of each host node in the data partitioning process.

(2) In order to overcome the shortcomings of the traditional spatial indexing mechanism,
this paper uses R-tree to construct a local index for the divided spatial data in a bottom-
up manner according to the distribution order of the geographic entity elements, and then
constructs a global index according to the Hilbert-R-tree, storing the information of the
local index and the global index on the DataNode and NameNode respectively, so as to
improve the efficiency of spatial data retrieval.

2. Trajectory query problem analysis and definition.

2.1. Definition of trajectory data. A trajectory is a curve that describes the path
of motion of a target object, e.g. a driving trajectory describes the path of a vehicle.
The study of trajectories begins by considering the description of the trajectory. For
descriptive convenience, the target object is abstracted into a target point. After a simple
abstraction, the physics of a trajectory is defined below.

Firstly, the curve [ formed by the position s of a moving point p in space varying
continuously with time t is called a trajectory T. For the storage of trajectories, query
operations, it is not enough to have an abstract definition description, but a more in-
tuitive and concrete mathematical description is also needed. In mathematics, curves
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can be described from two perspectives, continuous descriptions, such as curve equations.
The other is a discrete description, such as representing a section of a curve by a finite
number of points. Computers can only handle finite discrete problems, so trajectories are
represented in the computer in discrete form, i.e. trajectories are represented by a finite
number of ordered points. The definition of a spacetime point is shown below:

p=(z,y,1) (1)
where x represents longitude, y represents latitude and t represents the time attribute of
the spatio-temporal point.

Suppose that a trajectory Traj = {po,p1,...,pn} is an ordered set of spatio-temporal
points generated by a moving object [22].

p1:<dl,tl),26{1,2,,n} (2)

A monitoring point d (z, y) is a deployment point of a collection device, which has spatial

properties. The set of all monitoring points d (z, y) is called the set of monitoring points
{D|dZ (l’wyz) € D,Z = 0,172, e ,n} .

For two consecutive spatio-temporal points on a trajectory, if there is an unrecorded

spatio-temporal point py., between them, then this spatio-temporal point p., is called
the key point.

\/(yi-i-l =) + (T — 23)
tit1 — t;
where vgresn 1S the rate threshold.
We divide the trajectory with missing keypoints into two sub-trajectories: and . If
for a sub-trajectory there is no key point pkey , this sub-trajectory is called a single-trip
trajectory. A single trip trajectory is used to describe the movement of the target in one

trip. For each trajectory, the format of the trajectory logic storage model is shown in
Table 1.

<Uthresh70§i§n_1 (3)

Table 1. Track storage logic model.

. . P1 P2 Pn
Field Traj ID Car ID T1 i T3 G T Gn
IR TR o P Track point 1 Track point 2 Track point n
Explanation Track ID License plate number Time 1 Position 1 Time 2 Position 2 Time n Location n

2.2. Trajectory query problem analysis. The needs of trajectory query may be com-
plex and diverse, but they are all combinations or variations of the following types of
basic trajectory query. With the frequent increase in the types of trips, the demand for
trip queries is increasing and is a new type of trajectory query.

The spatial data selection operations can be divided into two types of point queries
and trajectory queries. The object of a trajectory query must be a trajectory, and the
returned result must be a trajectory or a collection of trajectories [23]. For example, find
all trajectories within 100m of a spatial point (114.0791000, 22.5458000). The parameters
required for the point query and the query example are listed below.

Method: TrajPointQuery.

Input: Spatial-Point, Thresh.

Output: Traj |].

Example of a query.

Spatial-Point (114.0791000,22.5458000), Thresh=100.00meter.

Spatial-Point (116.3464700,40.0200400), Thresh=100.00meter.

Spatial-Point (116.2802000,39.8956000), Thresh=100.00meter.



1066 Y. Chen and X.-L. Wu

Suppose that a rectangle R can be represented by two endpoints S and T on its main
diagonal.
R=(5,T),5 = [s1,52,...,8n), T = [t1,ta,...,ts] (4)
The distance from a point P to a rectangle R in the same space is noted as MINDIST
(P, R).

MINDIST(P,R) = Y _ |pi — ri* (5)
=1

If the points lie inside the rectangle, the distance between them is 0. If the points lie
outside the rectangle, the distance between them is the square of the Euclidean distance.
The square is used to reduce the computational cost, and the square of the distance is
used as the metric later on.
Si, if P < S;
ri =14 ti if p; >s; (6)
pi, otherwise

The minimum distance from a point P to an object o in space is expressed as

(P, 0)| = min (Z pi — x| VX = [21,..., 2] € o) (7)

For a point P and an MBR R = (S, T) with the same dimension, MINMAXDIST is
defined as shown below [24]:

- . . 2 o '2
MINMAXDIST(P, R) = min | [p — |’ + 2; |pi — r M| (8)
15’21@
: (sk+tw)
s i py < Lt
T _{ t,  otherwise (9)

. if S (si+ti)
M, = S; 1 i = 2 1

v { t; otherwise (10)
An example of the calculation of MINMAXDIST for the query point p (8,0,0) for an

n-dimensional object is shown in Figure 1.

3. Hilbert-R-tree index design in parallel computing mode.

3.1. Fundamentals. For R-trees, the overlap between nodes will lead to more invalid
nodes being accessed when querying, increasing the number of data accesses and thus
affecting its query performance. While Hilbert space filling curve has good clustering
effect, it can effectively solve the clustering storage of data.

As spatial queries require a large number of computational operations, and the tradi-
tional serial processing method cannot provide results back to the user in an acceptable
time when dealing with large amounts of data, this will lead to lower user satisfaction.
Therefore, parallel processing of data is needed to improve the query efficiency. Hilbert
space-filling curves can effectively reduce the overlap between nodes and reduce the dead
space of index structure, thus facilitating the construction of indexes for each host node
in a cluster. Therefore, this paper proposes a Hilbert-R-tree spatial index based on the
parallel computing model, which can make full use of the Hilbert curve characteristics to
reduce, sort and divide data, so as to build an efficient index and improve query perfor-
mance.
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Figure 1. MINMAXDIST

Finally find MINDIST (P, R) =20 and MINMAXDIST (P, R) =105 for this

example
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First, for agenda parallelism problems where the number of tasks is greater than the
number of processors, real parallel computers must be clustered, as shown in Figure 2,
with each processor performing multiple tasks.

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

TOCCSSO0T1)

1

10CesS01

2

Figure 2. Parallel aggregation of agendas

T0CCSSo1

3

Conceptually, agenda parallelism takes the form of backpack tasks, where each processor
repeatedly takes tasks out of the backpack and executes them until the backpack is empty,

as follows:

Processor 1: Takes out tasks and executes them when they become available;
Processor 2: Takes out tasks and executes them when they become available;

Processor K: takes out tasks and executes them when they are available;

In cluster parallel computers, the agenda parallelism problem of clustering is usually
implemented in the Master-Worker model, as shown in Figure 3. First, the Master sends
the task to the Worker. then, the result of the execution is obtained from the Worker,
thus tracking the result of the whole program. Each Worker receives the task from the
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Agenda

Figure 3. Master-Worker mode

Master and computes the result. In a cluster parallel program, the Master-Worker model
is used exclusively for load balancing.

3.2. Hilbert-R-tree coding. The construction of a Hilbert-R-tree first requires the en-
coding of spatial data, and the Hilbert-R-tree encoding method is described below.

The operation that transforms spatial coordinate data into Hilbert-encoded [25] is called
the forward operation. The operation that transforms Hilbert-encoded data into spatial
coordinate data is called the inverse operation. The calculation procedure for the positive
operation is shown in Table 2.

Table 2. Positive Arithmetic.

x[i] yli] s[2i:2i-1] x[i-1:1] y[i-1:1]
0 0 00 Y1) z[i 1]
0 1 01 zfi-1:1] yli-1:1]
1 0 11 y[i-1:1] zfi-1:1]
1 1 10 z[i-1:1] y[i-1:1]

For example, for a point (5,4) on an 8x8 plane. By checking the table, we can get
s[6:5]=10, z[2]=0, y[2]=0. z[1]=0, y[1]=1, giving s[2:1]=01, so the final s=100001, i.e.
s=33. Conversely, the inverse operation is calculated as shown in Table 3.

Table 3. Inverse operations

s[2i:2i-1] x[i] yli] x[i-1:1] y[i-1:1]
00 0 0 YL o[ L]
01 0 1 zfi-1:1] yli-1:1]
10 1 0 yli-1:1] zfi-1:1]
11 1 1 z[i-1:1] y[i-1:1]

3.3. Construction of the Hilbert-R-tree. First, the spatial data set is encoded and
partitioned. Second, the partitioned data is sent to each Worker host node to build the
spatial index structure in parallel. Finally, the Master node maintains a reference to the
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root node of the spatial index structure constructed in each host node to facilitate spatial
queries.

The construction of a Hilbert-R-tree in parallel computing mode consists of three main
stages:

(1) Encode and partition the spatial dataset. The spatial data set D is partitioned
into k equal parts of equal size, where a small error is acceptable in practice. Hilbert
encoding is performed on the spatial data set, i.e. Hilbert encoding is calculated for
the centroid of the MBR of each spatial object, and the spatial objects are sorted in
parallel according to Hilbert encoding, and then the ordered spatial objects are divided
into groups, thus dividing the spatial neighbouring objects into the same partition and
facilitating the subsequent construction of the spatial index structure.

(2) Send the divided data to each Worker host node and build the spatial index structure
in parallel. The specific design of the spatial index structure is described in detail later.

(3) Merging of Hilbert-R-tree indexes. the reference to the root node of the spatial
index structure constructed in each host node is maintained in the Master host node to
facilitate spatial queries. The pseudo-code for constructing a Hilbert-R-tree in parallel
computing mode is shown in Algorithm 1.

Algorithm 1 Build the Hilbert-R-tree

1: initial the cluster//initialise cluster information

2: if the host node is Master

/* A parallel team of two threads executes two parallel sections concurrently the master
section and the worker section. */

3: ParallelTeam().execute(ParallelRegion())

4: MASTER:

5 masterSection()

6: barrier();

7. WORKER:

8: barrier();

9: workerSection()

10: else

11: myslices =world.receive()

12: workerSection()

13: endif

14: for each myslice in myslices do//master node and worker node build Hilbert-R-tree
in parallel

15: tree.insert (myslice);

16: Merge the root node in all hosts;:// Merge the Hilbert-R-tree root nodes in all hosts

After initialising the cluster information, if a node in the cluster is the master node,
two threads are opened to execute two sections in parallel, the masterSection and work-
erSection sections, as shown in Algorithm 2 and Algorithm 3 respectively. At this
point, the workerSection section in the master node and the workerSection section in
the worker node are in a blocking state and become active as soon as data is sent.

Algorithm 2 masterSection()

1: read the dataset and compute Hilbert value for every data rectangle;
2: S=sort(records); /sort datarectangles by Hilbert values on the ascending orders.
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3: myslices=partition(S);//partition the records according to the number of hosts.

The masterSection() function first reads the dataset in parallel and calculates the
Hilbert value for each record, then sorts the dataset in parallel according to the Hilbert
value, after which the data can be divided.

Algorithm 3 workerSection()

if the host node is Master
worldscatter (root slices, myslices); // send data to master node
else

world.scatter(root,null, myslices)// send data to worker node
endif

The workerSection() function sends the above divided data to each host node.

4. Design of parallel spatial indexes for spatial data.

4.1. Local index construction. After partitioning the data, the number of feature
targets contained in each data block does not vary greatly, so how to build an index on
this already partitioned data is the next major problem to be solved.

Assuming that the number of geographic elements contained in a divided data block is
N, then the number of outsourcing rectangles to be created for these geographic elements
is N. For each node, the maximum number of geographic elements that can be contained is
M, then the number of nodes required for all geographic elements is P = N/M. For spatial
big data, it is assumed that when creating an R-tree, the empty tree is inserted one by one
with geographic elements until the indexing is completed, which will lead to inefficiency
and mismanagement [26]. Therefore bulk processing of spatially large data is required.
To construct an R-tree index, the geospatial dataset needs to be sorted according to a
dichotomous rule. The ordered geospatial elements are then pressed into the leaf nodes in
the R-tree. By recursive inter-party, it is also ensured that spatially adjacent geographic
entities are assigned to the same R-tree, reducing the cost of data retrieval and data
exchange. The spatial index of each data block is constructed as follows:

(1) Before constructing the R-tree, assume that the degree of the R-tree is D. After
MapReduce divides the spatial data, it already constitutes ordered data, so the spatial
data can be inserted into the R-tree nodes in each group in the order of smallest to largest.

(2) For geographic entities, separate R-tree node insertion operations are performed so
that new leaf nodes are generated and used to store the corresponding unique ID value
and minimum outlier rectangle (id, MBR) for each group, returning (id, MBR) as a key-
value pair. The unique identifier used by the parent node to locate its children is the
id.

(3) Recursive processing of the previous step. Firstly, the minimum outer rectangle
MBR is sorted, then the parent node is generated based on that sort and the geographic
entity elements, and this step is repeated, stopping when a root node is finally generated.

This spatial index is built from the bottom up, and the R-tree is constructed based
on the spatial distribution of geographical elements. If the nodes are adjacent in spatial
distribution, then this index construction ensures that they are located on the same parent
node, thus saving a lot of computing time in subsequent operations such as spatial analysis
and improving the efficiency of spatial big data management. The pseudo-code for local
index construction is shown in Algorithm 4.
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Algorithm 4 CreatRTree()

1: public class CreatRTree

2: Data d; // input data, a new leaf node

3: Long id:// Unique identifier of the geographic entity element

4: MBR r// Minimum outsourcing rectangle for geographic entity elements
5: public static Node RtreeCreat()

6: for (int i=0; ijnumRects; i++)

7: d.getMBR(); // get the rectangular coordinates

8: r.insert(d); // get the minimum outer wrapping rectangle of the geographic entity
elements

9:

10: InsertNode(); //Insert a new leaf node

10: sortMbr(); // Sort the outsourced rectangle

11: BuildRTree(); // select generation to process until root node is generated
12:

13:

4.2. Global index construction. Due to the unusually large amount of spatial data
data, all operations on delineated geographical data should go through the global index
first, followed by the local index, which can improve the efficiency of data retrieval and
optimise the query results.

For global indexes, which are accessed more frequently by users and have a smaller data
volume than local indexes, the global index can be placed on the name node NameNode
and store the relevant information. The only difference is that the R-Tree data node stores
a storage path to each HDFS, rather than a pointer to a leaf node. The HDFS storage
path Path and the MBR information of the local index R-Tree allows the overall index to
be linked to the local index in a way that is more efficient and less time consuming when
performing spatial data queries.

The global index needs to store the HDFS path information and the minimum out-
sourcing rectangle information, so the global index needs to be constructed according to
the parallel Hilbert-R-tree method after the local index has been built.

5. Experimental results and analysis.

5.1. Data pre-processing. All experiments were implemented in a cloud Hadoop envi-
ronment, using components such as HDFS, MapReduce and Hbase. The original trajec-
tory data and the normalised trajectory data were stored on Hbase. The pre-processing
of the vehicle trajectory data was based on the implementation of MapReduce, using PIG
scripts for data cleaning, normalisation and trajectory segmentation. The data cleaning
part mainly filters the data for abnormal values, null data and invalid data to ensure that
the processed data is standardized and reasonable. The standardisation of the data is to
adjust the storage format of the trajectories.

5.2. Experimental environment. The implementation of trajectory segmentation and
spatial indexing relies on various components of the Hadoop environment, so the experi-
mental base environment consists of a Hadoop cluster containing three Linux servers, each
server being one node. the Hadoop set cluster consists of one Master node and two Slave
nodes with CPUs of 24, 8 and 8 cores, respectively, and CPU main frequencies of 2GHz,
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2.4GHz and 2.5GHz, and memory of 16GB, 8GB and 8GB, respectively. The Hadoop
cluster consists of one Master node and two Slave nodes with 24-core, 8-core and 8-core
CPUs and CPU main frequencies of 2GHz, 2.4GHz and 2.5GHz respectively, and 16GB,
8GB and 8GB of RAM respectively.

5.3. Experimental data set. The data used in this paper is derived from the license
plate recognition data of Shanghai. The data contains the travel records of 1760776
vehicles for 13 days. To validate the proposed method, the dataset was divided into two
time bounded segments, the first 7 days were used as training set to generate the threshold
dataset and the last 6 days were used as test set to verify the correctness of the method.
The statistical information of the experimental data is shown in Table 4. For the purpose

Table 4. Statistical information on experimental data.

Data category Number

Number of training set records 9909235
Number of vehicles in the training set 1191990
Number of test set records 6741483
Number of vehicles in the test set 915734

of evaluation, only vehicles in the test set with more than 100 track points recorded were
selected for the split.

5.4. Evaluation indicators. The experimental evaluation mainly considers the accu-
racy and coverage of the identification results.

Defining R to denote the set of actual keypoints and D to denote the set of keypoints
annotated by the algorithm, then the accuracy rate can be expressed as

RND

Po= x 100% (11)
The rate of detection of completeness can be expressed as
RND
Pee = 7 x 100% (12)

5.5. Analysis of experimental results. The experimental results contain two parts,
which contain the results of the index construction experiment and the results of the
trajectory query experiment.

Index construction is performed for data before and after segmentation, as shown in
Figure 4. When the amount of data is small, segmentation has a small impact on the
construction time of the three indexing methods, but as the amount of data increases, the
indexing construction time of the segmented trajectory data consumes less than that of
the unsegmented trajectory data. All three indexing methods are in parallel computing
mode. As shown in Figure 5, for the same data set, the R-tree index always takes better
time to build than the Hashing tree, due to the addition of trip fields to the Hashing
tree index. the Hilbert-R-tree index takes the fastest time to build and takes less time
incrementally than the Hashing and R-trees as the data volume grows. As shown in Figure
6, for point queries, each of the three indexing methods was used and the Hilbert-R-tree
index was found to be the best and the most efficient for queries. Similar results are
shown in Figure 6 for the track segment query, using each of the three indexing methods,
and it was found that the Hilbert-R index was the best, followed by the R-tree query, and
the Hashing tree was the lowest.
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Figure 5. Time-consuming comparison of the three index construction methods

Finally, R-trees and Hilbert-R-trees were selected for a comparison of trajectory iden-
tification, as shown in Table 5. The Hilbert-R-tree based method is 20% higher than the
R tree based method in terms of detection accuracy and 51% higher in terms of detec-
tion completeness. It seems that the method proposed in this paper is more effective for
trajectory recognition of large data trips.
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Figure 6. Point search experiment results

Table 5. Track Recognition Comparison Results.

Spatial indexing algorithms Check accuracy Search completeness rate
Hilbert-R-trees 82.169% 89.539%
R-tree 62.301% 38.785%

6. Conclusion. In this paper, we have conducted an in-depth study on the indexing
method of trajectory data in a big data environment. In response to the fact that tradi-
tional serial techniques become inefficient in handling spatial queries, this paper proposes
a Hilbert-R-tree construction algorithm based on a parallel computing model. The spatial
data is sorted and partitioned in parallel using the characteristics of Hilbert space curve,
thus well balancing the load of each host node in the data partitioning process. For the
massive spatial data, due to the characteristics of uneven spatial distribution and data
adjacency, it is necessary to divide it reasonably, so the global index and local index are
constructed and the construction process is elaborated to further improve the efficiency of
spatial data retrieval. The results show that the spatial data indexing in the distributed
environment has good performance and can meet the demand for real-time query of big
data of traffic trajectories. After the efficient indexing of spatial data, how to continue
to use the Hadoop platform to perform a series of spatial analysis on it, such as network
analysis and overlay analysis, so as to improve its efficiency, is the next direction that can
be carried out to focus on research.
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